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Abstract: A wide-angle seismic reflection / refraction survey along a ~ 600 km long transect through the Junggar basin
from Emin to Qitai allows to receive several images near N-S trending blind faults, which are located at the lower part of
the upper crust, the middle crust and the lower crust within the basin and cut up the Moho. These faults, with high seis-
mic velocity and without obvious dislocation, are considered as “extensional faults” formed by north-south compression
and east-west extension. These deeply rooted faults provide channels via which basic to ultra-basic materials from upper
mantle migrate into the crust and mix up with the crustal material causing thin thickness, high seismic velocity, high den-
sity and high magnetic intensity after cooling in the crust of the basin.
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Pestome: LLnpokoyronbHas cencmopassegka METOAOM OTPaXKeHHbIX / MPEeNIOMIIEHHbIX BOSTH BAOMb IMHWK NONEPEYHOro
paspesa NpoTsKEHHOCTbIO ~ 600 kM Yyepes [xyHrapckui 6acceitH oT AMuHa o Lutas nos3sonseT nonyyunTb u3obpaxe-
HNEe HECKONbKKUX CnenbiX pas3fioMoB C NPOCTUPaHMEM C CeBepa Ha tor, KOTOpble pacnonoXeHbl B HUXHEW YacTn BerHeVI
KOpbI, B CPeHen W HWKHe YacTsax kopbl B npeaenax 6accenHa v paspesatotT Moxo. 31u pasnomsbl, obnagaoLime BbICo-
KOV CEMCMUYECKOW CKOPOCTBIO U HE UMEIOLLME SBHOW AUCIOKALMM MIacTOB, CYMTAKOTCS «pas3noMamu pacTskeHus», 06-
pa30BaHHbLIMM CXaTUEM C CEBEPA Ha Kor U pacTSXeHNeM ¢ BOCTOKA Ha 3anap. OTv rnyboko 3aneratoLume pasnombl obec-
MeynBaloT KaHanbl AN OCHOBHbIX M YNbTPAOCHOBHBIX MaTepManoB U3 BEPXHEN MaHTUW, KOTOPbIE MUTPUPYIOT B KOPY M
CMELLMBAIOTCA C MaTepuanom Kopbl, B pesynbTaTte 4ero kopa 6acceiHa CTaHOBUTCSH TOHKOM W npuobpeTaeT BbICOKYHO
CeyicCMUYeCKy0 CKOPOCTb, BbICOKYIO NMAOTHOCTb 1 BbICOKYHO MarHUTHYI MHTEHCUBHOCTb MOCHE OXNaXaeHus.

Knroyeenie cnosa: [IxyHrapckuin 6accemH, WMPOKOYronbHOE NpouMpoBaHMe MeTOAOM OTPaXeHHbIX / NpenomneH-
HbIX BOJH, CTPYKTypa CKOPOCTM, CTPYKTypa NAOTHOCTW, CTPYKTYypa MarHUTHOM HanpsikeHHOCTW, reoriornyeckas MHTep-
npeTauus

BnazodapHocmu: 370 UCCrefoBaHWe BbINOMIHEHO NPU COBMECTHOM Noaaepkke nporpaMmbl «KpynHble HauMoHamnbHbIe
Hay4YHO-TEXHUYECKME NPOEKThI N0 pa3paboTke KPYMHbIX MECTOPOXAEHWIA HEDTU 1 ra3a, a Takke MeTaHa YrosibHbIX nna-
cT0B (201172X05003-005)», HaunoHansHoro HayuHoro oHga Kutas (41888101), rpaHtoB «[Mporpamma cTpaTermnyeckux
npuopuTeTHbIX uccnegosaHuii (A) Kutainckoin akagemumn Hayk (rpaHT Ne XDA20070302)», «CoBmecTHble uccnegosa-
TenbCkne NpoekTbl MakuCTaHCKOro HayyHoro coHga v HauumoHanbHoro doHga ecTecTBeHHbIX Hayk Kutasa (rpaHT
Ne 41661144026)» n «PasBegka W UcCNefoBaHWE KOHTUMHEHTanbHOM cybaykummu B 3anafgHbix Mmanasx (rpaHt
Ne 41490611)». Mbl Gnarogapum nccnegosatenen LieHTpa reoduanyecknx uccnepgosaHuini CEA 3a ux ycepaHyto paboty
Mo MOSYYEHNI0 AaHHbIX LWMPOKOYTONbHOro oTpaxkeHust / npenomnenus. Mel Takke 6narogapvum goktopa louuH YxaH 3a
npefoCTaBneHNe rpaBUTaLMOHHBIX U FTeOMarHUTHBIX AaHHbIX.

Ans yumupoeaHus: Yxao Li3toHbMaH, Ca0 BaHbusso, YsHb CuHbga, Ban CaousioHb, CyH tOH, BaHb Baonu [ ap.].
CwmeLlaHHbIn KpucTannmyeckuin doyHaameHT [IXyHrapCKoM KOTIOBWHbI, BbISIBMIEHHbIN METOAOM LUIMPOKOYrONbHOW CENCMO-
pasBegku. Hayku o 3emne u Hedpononb3osaHue. 2021. T. 44. Ne 1. C. 8-29. https://doi.org/10.21285/2686-9993-2021-
44-1-8-29

Introduction

The Junggar Basin is a large-scale intracon-
tinental superimposed basin in northern Xinjiang
since Permian [1-3]. It is the most promising
area for petroleum prospects in China. In the
past decades, the researches on the Junggar
basin have given profound results dealing with
the tectonic background and the evidence for

existing theories [4-7]. Although a lot of geo-
physical and geological studies have been car-
ried out since the 1980s, there are still many
divergences of view in basin’s tectonic evolution
and the basement structure.

Xiao et al. [8] divided the evolution of the
Junggar basin into several stages: the early
Paleozoic intra-oceanic arc evolution, the Early

*Cratbs bGblna npegocTaBneHa pedakumen xypHana Earth Science Frontiers B pamkax cornalieHust Mexxay pedakuusimm
MpKyTCKOro HaLMOHaNbHOrO MCCnedoBaTeNbckoro TeXHWYeckoro yHusepcuteta (r. Mpkytck, Poccus) n Kutaiickoro
reonornyeckoro yHueepcuteta (r. MekuH, Kutain) 06 o6meHe Hay4yHbIMK CTATbSIMM OTKPLITOrO A4OCTyna.
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Devonian and later Middle Devonian rifting evo-
lution of the Junggar ocean, formed from the
rifting of the early Paleozoic folded basement,
the relic ocean from Later Devonian to late Car-
boniferous, and the final accretion orogeny in
the late Carboniferous-early Permian. Wu [9]
considered that it was a rift in Permian, a de-
pression in Triassic-Old Tertiary, and a contrac-
tion and uplift stage after Neogene. You [10] di-
vided the basin into rift stage in Carboniferous-
Triassic, central uplift stage in Jurassic and
piedmont depression stage after Cretaceous.
Zhao [11] divided the basin into fault depression
stage in Permian and Triassic, depression stage
in Jurassic-Old Tertiary and shrinkage-uplift
stage after Neogene. Xiao et al. [12] considered
that the Late Carboniferous-Early Permian was
a marine foreland basin. Yang et al. [13] also
classified the Early Permian as marine foreland,
the Late Permian and Neogene-Quaternary as
continental foreland, and the Triassic-Paleogene
as oscillating continental basin. The main differ-
ences in the above-mentioned division opinions
lie in the understanding of whether the nature of
the basin is tensional or compressive in the Ear-
ly Permian and the nature of the depression ba-
sin in the Late Permian-Old Tertiary. These dif-
ferences have not narrowed, but have widened
in recent years. Sun [14] advocates that we
should abandon the understanding that the early
basin is collapse or tension and consider Jung-
gar as a Carboniferous-Permian foreland basin
based on the Triassic-Jurassic intracontinental
further subsidence, since the Cretaceous is
mainly the typical pre-revival period continental
basin, which unified only in the late Cenozoic.
On the contrary, Chen et al. considered that
Junggar Basin was a rift basin in the early stage
(P), a craton basin in the middle stage (T-E),
and a compression basin in the late stage (N-Q).

The basin’s basement composition is also a
controversial topic in the international communi-
ty. Some researchers proposed that the central
part of the Junggar basin is composed of a con-
jectural craton nucleus [1, 15]. Some others in-
terpreted the basin as a trapped oceanic litho-
sphere [4], a relict back-arc basin [16] or de-
formed Altai Paleozoic rocks [17].

According to previous geophysical research
in northwestern China, the average crustal

Earth sciences and subsoil use / ISSN 2686-9993 (print), 2686-7931 (online)

thickness of the Junggar basin is about 50 km,
while those of the Tarim basin and the Qaidam
basin are ~55 km [18, 19] and ~ 60 km [20],
respectively. The average P-wave velocity is 6.3
km/s in the Junggar basin [21], about 6.0 km/s in
the Tarim basin [19], and about 5.8 km/s in the
Qaidam basin [20]. Therefore, the Junggar basin
has a thinner crustal thickness and a higher av-
erage crustal velocity than the Tarim and
Qaidam basins. The formation mechanism for
such characteristics, as well as the high geo-
magnetic anomalies distributed in the central
part of the basin, is not well understood.

Recently, a comprehensive geophysical sur-
vey along a ~ 600 km long transect through the
Junggar basin from Emin to Qitai was carried
out (Fig.1). Along the profile, a wide-angle
seismic reflection/refraction was carried out to
obtain 2D velocity structure of the crust and up-
per most mantle. Based on the 2D velocity
structure as evidence for designing the starting
model of the 2D density structure and 2D mag-
netic intensity structure and constrained by
gravitational and geomagnetic anomalies along
the profile, the density and magnetic intensity
structure were obtained. Finally, we proposed
a comprehensive geological interpretation.

Seismic data and processing

Recently, a seismic reflection/refraction pro-
file as part of the ANTILOPE project was carried
out to constrain the seismic velocity structure
and physical properties of the crust and upper
most mantle (Fig. 1). The profile crosses the
Junggar basin from Emin in the northwest to
Qitai in the southeast margins of the basin. The
geometry of the profile was designed to optimize
recording of refractions at near-critical distance
and to provide velocity control for the near verti-
cal reflection experiments, particularly at Moho
depths to image the topography of the Moho.
Along the profile, wide angle seismic reflec-
tion/refraction with 8 chemical explosions (2 tons
of TNT for each) has been carried out, and 204
seismic receivers of DAS-1 & 2 models have
been used to record the signals (Fig. 2). All re-
ceivers were positioned by GPS, with a station
spacing of 1.5~3.0 km, depending on the topo-
graphic and tectonic complexity of the region.
The acquisition system shown in Fig. 2 can
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Fig. 1. Maps of the Junggar Basin:

a — topographic map of the Junggar Basin and its adjacent regions (shown is the location of about 600 km
long seismic refraction / wide angle reflection profile from Emin to Qitai through the Junggar Basin; the circled
numbers indicate shot points 1 to 8 of the seismic profile; the box indicates the region depicted in b);

b — the tectonic map of the target region
Puc. 1. Kapmbi [xyH2apcko20 6acceliHa:

a — monoepaghudeckas kapma [xyHeapcKol KOmio8UHbI U npusie2atujux patioHo8 (loka3aHo MecmornonoxeHue
npoghursisi celicMu4ecKo20 rpenomneHus / WUpoKoy2onbHo20 ompaxeHus nuHol npubnudumensHo 600 kum,
nepecekarowie2o [xyHeapckuli bacceliH om IMuHs do Lumas; yugpbl 8 Kpyxoukax ykassleaom oyaau
celicmuyeckoeo 83pbiga npoguns ¢ 1 no 8; pamkol ebideneHa obnacme, UsobpaxeHHas Ha puc. b;

b — mekmoHuyeckasi kapma yenegoeo peauoHa

provide us with needed coverage and seismic  the tectonic evolution of the basin. The seismic
illumination to study the structure and properties  records along the profile are shown in Fig. 3.
of the basement, the structure of the crust and  The ray tracing and theoretic seismogram are
uppermost mantle, and some deep faults partic-  shown in Fig. 4. The effective ray coverage is
ularly those cutting up the crust and controlling  shown in Fig. 5.
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Fig. 2. Observational system (a) and elevation (b) of the seismic
reflection / refraction profile from Emin to Qitai
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Fig. 3. Reduced seismic records:
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Fig. 4. Example of the ray tracing and theoretic seismogram:
—ray tracing; b — traveling time fitting; ¢ — amplitude fitting; d — seismic records
Puc. 4. [Tpumep mpaccuposku syyeli u meopemuyeckol celicMo2paMMbI:

a — mpaccuposka nyyel; b — annpokcumayus epemeHu pobeaa 80sIHbI;
C — annpokcumayus amnaumyosl; d — celicMozpamMmel

Identifying seismic phases is a key step in identification to increase accuracy. Five criteria
processing the seismic data. Due to relatively  for phase picking are listed as follows:
sparse shot and receiver spacing (compared 1) Identified phases must have connecting
with near vertical reflection), phase identification ~ sections and/or connecting waves with strong
was combined with wave group (energy parcel)  amplitudes;
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Fig. 5. The example of seismic recorders (a) and the 2D velocity structure
of the crust and uppermost mantle (b) from Emin to Qitai:
a — seismic signals from SP Emin
The vertical axis indicates reduced travel time by T-x/6 in second and the horizontal axis is the distance in km
from the shotpoint. The seismic recorders show strong Moho reflection along the profile but no seismic reflection
from the Moho can be found at the two faults, F1 and F2, indicating that there is no wave-resistance interface
at and nearby these two faults. These faults, with high seismic velocity and without obvious dislocation,
are considered as the “extensional” faults, formed by north-south compression and east-west extension;
b — 2D velocity structure of the crust and uppermost mantle
The vertical axis is depth in km and the horizontal axis is distance in km. It was obtained
by ray tracing and theoretical seismograms for each shot point with an improved SEIS83
program under the condition of 2D lateral inhomogeneous medium
Puc. 5. llpumep celicMu4yecKkux peeucmpamopos (a) u 2D cmpyKkmypbi ckopocmu
KopbI u eepxHeli Yacmu maHmuu (b) om Amurs do Ljumas:
a— celicMuyeckue cueHarnbsl om CIT OMuHb
BepmukarnbHasi ocb — 3mo 8peMs npobeza 80/1HbI, yMeHbleHHoe Ha T-x/6 8 cekyHOy, 20pu30HmMasbHas 0Cb —
paccmosiHue om o4aza celicMUYecKo20 83pbiea, kM. CelicMuYyecKue peaucmpamophb! MoKa3bieaom CUTbHOE OmpaxeHue
om Moxo edosib npogpuns, Ho 8 pasnomax F1 u F2 celicmuyeckoe ompaxeHue om Moxo He 3apeaucmpupogaHo, Ymo
yKasblgaem Ha omcymemeue gpaHuubl pasdesia 80JITHO8020 CONPOMUBIEHUST Ha OaHHbIX pa3fiomax u psidoM ¢ HUMU.
Ob6nadas ebicokol celicMu4ecKoli CKOPOCMBHO U HE UMes IBHOU ducriokayuu, 3mu passioMsl paccmampuearomest
KaKk «pa3fiomMbl pacmsixeHus», 06pa3osaHHbIe CxamueM C cesepa Ha o2 U pacmsikeHUEM ¢ 80CMOKa Ha 3anad;
b — 2D-cmpykmypa ckopocmu 3eMHOU Kopbl U 8ePXHEU MaHmuu
Mo eepmukanbHoOl ocu omoxeHa aiybuHa, KM, N0 20pU30HManbHOU OCU — PaccmosiHUE, KM.
[JatHbie nonyyeHbl MemodoM mpaccuposku fyyel U meopemu4ecKux celicMoepamm O11si Kax002o oyaza
celicMU4eCKO20 83pbiBa C UCM0Ib308aHUEM YCOBEPUWEHCMBO8aHHOU npozpammbl SEIS83
8 ycriogusix dgymepHoU 60ko8ol He0OHOPOOHOU cpedbl
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2) The amplitude of the wave must be great-
er than that of the noise;

3) The apparent velocity for a phase must be
within a reasonable range;

4) The picked continuous travel-time curve
must be greater than a minimum length;

5) Seismic reciprocity must hold for the com-
plete observational system when we inter-
change the source and receiver positions.

Based on these criteria, we mainly identified
the following seismic phases: Pg, P1, Pc, Pm
and Pn.

(1) Pg Wave. Pg is a refracted wave that
travels in the top part of the crystalline base-
ment. The slope of its traveltime moveout curve
yields precisely the P wave velocity in the
basement. Generally, Pg can be traced to more
than 130 km away from the shot point. Some
significant differences in the reduced travel time
for each shot point have been observed due to
variations in the depth of the crystalline base-
ment. In the Zayier Shan at the western end of
the profile and Bogda Shan at the eastern end
of the profile where the crystalline basements
are almost exposed to the surface, the Pg wave
appears much earlier (Fig. 3). However, in the
middle segment of our survey line, the sediment
is thick and Pg arrives much later. The apparent
velocity of the Pg changes significantly at the
two ends of the profile especially the transitional
zones from basin to range, due to the undulation
of the top surface of the crystalline basement,
and changes little in the inner basin, showing
that the top surface of the crystalline basement
of the basin is flat. The apparent velocity of Pg is
about 6.0-6.2 km/s.

(2) P1 Wave. The P1 wave is the reflected
wave from an interface in the upper crust at a
depth of 21.0-28.0 km. The amplitude and con-
tinuity of this wave changed significantly along
the profile. Generally, the P1 wave is weak in
energy and poor in continuity. The average ve-
locity of the P1 wave is 5.8-6.1 km/s.

(3) Pc Wave. Pc is the reflected wave from
the interface in the middle crust, at a depth of
36.0-40.0 km. In the Zayier Shan and the Bog-
da Shan, the Pc waves are weak and can be
traced out to about only 40 km. In the Junggar
basin, the Pc waves are relatively strong and
have a good continuity. The Pc waves from Za-
yier Shan and Bogda Shan are different. The Pc

leonorus, noMcku u passegka MeCTOpO)K,CIeHVIVI noJie3HbIX UCKOoNaeMbIX |

2021;44(1):8-29

waves from Zayier Shan (western branch of SP
Karamay) are relatively strong in energy and
good in continuity. It can be traced as far as
110 km, while that from the Bogda Shan is weak
and poor in continuity. The variation of the am-
plitude and differences in average velocity are
related to geological structure and material
properties of each tectonic unit, distinct from the
depth of the crystalline basement and undulation
of the interfaces. The average velocity deter-
mined for P2 is about 6.0-6.3 km/s.

(4) Pm Wave. Pm is the reflected wave from
the Moho discontinuity. Based on seismic rec-
ords, the Pm is characterized by its clear ap-
pearance, strong amplitude, good continuity,
and far-distance tracing. The Pm wave, howev-
er, has different waveforms, amplitudes and
travel-time curve patterns in different sections,
which suggest the existence of lateral crustal
heterogeneities in different tectonic units. How-
ever, the Pm waves in the sections between
150-185 km and 220-270 km are relatively
strong. This indicates that the Moho is undulat-
ed. In the basin, the Pm waves from SP Manas,
SP Hutub, SP Changji and SP Fukang (western
branch) have strong amplitude, excellent conti-
nuity and longer traceable distance, suggesting
that the Moho of the Junggar basin is highly re-
flective and sharp. The average velocity of Pm
waves is 6.2-6.7 km/s. However, we did not ob-
tain a clear Pm wave from the Bogda Shan.

Even though the seismic Pm wave from the
Moho in the Junggar basin is strong in energy
and good in continuity, there are some sections
where no clear Moho reflections have been ob-
served (i.e., the reflectivity is very poor).

(5) Pn Wave. Pn is the refracted wave from
the top part of the upper mantle. It can be used
to determine the velocity of the uppermost man-
tle. Furthermore, it can be used to determine the
Pm wave according to the geometric relation-
ship between the two. Pn waves have been rec-
orded at SP Emin (eastern branch), SP Kara-
may (eastern branch), SP Manas (eastern
branch), SP Hutub (eastern branch) and SP
Fukang (western branch) (Fig. 3). The Pn wave
arrives at a source-receiver distance of approx-
imately 200 km, with a velocity of about
8.0 km/s.

Additional wave groups P1'and Pc'were
recorded and discriminated in the eastern edges
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of the Zayier Shan (see SP Karamay and SP
Manas) and western edge of the Bogda Shan
(see SP Changji, SP Miquan and SP Fukang),
indicating the existence of some additional litho-
logic interfaces (C1' and Cc') in these regions (in
this notation, P1 and Pc are reflected waves
from interfaces C1 and Cc in the crust). P1" and
Pc' waves were not observed in the Junggar ba-
sin. This suggests that the crust of the Zayier
Shan and Bogda Shan is more complicated than
previously assumed, and provides some evi-
dence for mantle intrusion.

Reflected and refracted waves (Pg, P1, P2,
P3, Pm and Pn) have been identified on different
shot records and corrected from shot to shot
(Fig. 3). These phases featured by high ampli-
tudes provide a basis for dividing the crust into
three velocity layers, the upper, middle and the
lower crust. The first arrives at offsets of less
than 70 km imply lateral variations in velocities
at shallow depths (5.0 to 6.0 km/s) which can be
correlated with the surface geology (Fig. 1, b).
The velocity is estimated to be 6.2 to 6.5 km/s
in the upper crust (depth of 22 to 27 km), about
6.6 to 6.7 km/s within the middle crust (~ 23 to
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37 km), and 6.8 to 7.4 km/s in the lower crust
(from 30 to 52 km down to the Moho). An in-
crease in the average velocity throughout the
crustal column within the crust along the profile
is interpreted as an evidence for the increase in
mafic content at upper crustal levels and meta-
morphic grade in the middle to lower crust [18,
19]. The proposed layered velocity model is
non-unique but generates theoretical travel time
branches that are in agree (to within £0.1 s) with
the interpreted arrivals for all of the sections.

Velocity structure of the crust
and upper most mantle

Under the condition of 2D lateral inhomoge-
neous medium, we conducted ray tracing and
constructed theoretical seismograms for each
shot point with an improved SEIS83 program
[22], which are presented in Fig. 4, and obtained
the 2D velocity structure (Fig. 5, b). According to
the effective ray coverage (Fig. 6), we have ob-
tained not only the detailed velocity structure of
the crust, but also that of the uppermost mantle
(see the area within the blue dotted line in
Fig. 5, b).
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Fig. 6. Seismic ray coverage of the Emin — Qitai profile
The ray coverage of the transect is made by combining record sections of all shot points along the profile
with the respective parts of the ray tracing of the corresponding shot points and deleting all calculated
arrivals in the modeling which are not observed in the data
Puc. 6. [Mokpbimue celicMuyeckumu siy4amu npoghunsi IMuHb — umaii
[Nokpbimue mornepeyHo20 paspesa fy4Yamu npoussooumcs nymem 06beOUHEHUS y4acmKkos 3anucu
8cex 04azo8 celicMU4eCcK020 83pbiea 800/1b NPOUIIA C COOMBEMCMEYUUMU YacmsaMU mpaccuposKuU
ny4eli coomeemcmayujux 04a208 83pbiea U ydaneHuem npu MooenuposaHuu
8CeX 8bI4UCTEHHbIX MPUX0008 B0JIHbI, KOMOpPbIe He Habndarmcs 8 OaHHbIX
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Density and geomagnetic structures

Gravity and aeromagnetic data. To constrain
the density structure, we need some information
about the gravity. Based on the 1:200000
Bouguer gravity anomaly map of Xinjiang
(Fig. 7), there are two gravity gradient zones in
the northern and southern margins of the Jung-
gar basin, which clearly delineate the shape of
the basin. This is in agreement with the land-
scape and geological framework. The rock
magnetic strength is another important factor
one can use to distinguish rock types, together
with the P-wave velocity and density. The aero-
magnetic anomaly map of the Junggar basin
shows that the southern part of the basin (Ma-
nas terrain) has a stronger magnetism than the
rest of the basin.

Density and geomagnetic structures. Based
on the Bouguer anomaly and aero-magnetic
anomaly maps (1:200,000 scale), the 2D P
wave velocity structure, and the faults investi-
gated at the surface of the transect from Emil to
Qitai, we constructed a model for the density
structure. The starting model for the density in
each cell is given by the following velocity-
density relationship [23]:

2.78 + 0.56(1; — 6.0) (6.0 > 1}, > 5.5)
p =143.07+0.29(} —7.0) (7.5 > |} > 6.0).
3.22+0.20(1, —7.5) (85> 1, > 7.5)

Geological map
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Finally, the 2D density structure (Fig. 8, a) and
magnetic intensity structure (Fig. 8, b) were ob-
tained according to the Syn-Source theory and
through joint inversion of gravity with geomag-
netism and constrained by gravitational and geo-
magnetic anomalies along the profile (Fig. 7) [24].

Inference on the rock properties
of the Junggar basin

According to relationships among the veloci-
ty, density and rock type (Fig. 9) [25], and based
on the velocity distribution along the profile from
Xayar to Burjing [21] and from Baicheng to
Da Qaidam [19], basement rock types of the
Junggar basin were identified and catalogued
(Table).

The velocity is obtained from seismic data
generated by artificial earthquakes, and the
density and geomagnetic intensity are deter-
mined by joint inversion of gravity with geomag-
netism along the same profile. The results sug-
gest that the basement lithology of the Junggar
basin is complicated especially towards its cen-
ter. It is composed of mafic, ultra-mafic, and
acidic rocks, such as granite, schist, granulite,
gabbro.

Moreover, the Pb [23, 26, 27], Nd, and Sr
[28] isotope compositions of post-collisional in-
termediate and acidic plutons in the Junggar
basin show that these plutons originated from

s -~ Y48 ' s
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=y [ o
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¢ » : e NNy . o SV )
Aeromagnetic anomaly map (ATa)
b - —
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Map of gradient of Bouguer gravitational anomaly
- N - : ",—'-‘; é -
S A

Fig. 7. The map showing geology (a), geomagnetism (b) and gravitation (c) along the profile
Puc. 7. Kapma 2eonozuu (a), 2eomacHemu3sma (b) u epasumayuu (c) edosnb pa3pesa
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Fig. 8. The density (a) and magnetic intensity (b)
of the crust and upper most mantle along the profile from Emin to Qitai
The initial density model was designed based on the relation between velocity and density. The density and magnetic
intensity were obtained by joint inversion of the gravity and geomagnetic anomaly based on the Syn-Source principle
of gravity and geomagnetism. The upper panel of the a is Bouguer's anomaly measured and calculated by fitting.
The lower panel is the density in g/cm?. It was obtained by forward modeling under a same frame obtained by velocity
structure for both the density and magnetic intensity. The upper panel of the b is magnetic anomaly measured
and calculated by fitting. The lower panel is the magnetic intensity in 0.01-A/m obtained by the same way
as the density modeling. For the detail description of the joint inversion, please see [24]
Puc. 8. [lnomHocms (a) u MaeHUMHasi HanpsikeHHocmb (b)
KOpbl U eepxHell Yacmu MaHmuu no npogusiro om IMuHs do Lumas
lMepeoHayanbHas Modens nnomHocmu bblna pa3pabomaHa Ha 0CHO8E COOMHOWEHUST MexX0y CKOPOCMbHO
u nnomHocmbio. [11omHoOCMb U MagHUMHas UHMeHCU8HOCMb Bblu MomyYeHbl coeMecmHol uHeepcuel
2pasumayuoHHoU U 2e0MacHUMHOU aHoMaruu Ha 0CHoge npuHyuna Syn-Source epagumayuu u 2eoMagHemu3ma.
B gepxHell yacmu puc. a npedcmasneHa aHomanus byee, usmepeHHas u paccyumasHasi mymem annpokcumayuu.
HuxHsist yacmb puc. a nokasbigeaem naomHocms, a/cme. [aHHble bbiiu nony4eHs! npsmbiv ModenuposaHuem 8 mol
XKe cucmeme omeyema, rnofy4eHHOU C MOMOWbI0 CMPYKMypbl CKOpOCMU, Kak 0518 miomHocmu, mak u 07151 MagHUmHoU
HarpspkeHHocmu. BepxHsas yacmb puc. b demoHCmpupyem MagHUMHYH aHOManuto, U3MEPEHHYH U paccyumaHHyto
nymem annpokcumayuu. HuxHsas yacme puc. b nokasbieaem macHUMHYI0 HanpskeHHocms, 0.01-Alm, nonyyeHHyr
mem xe crnocobom, 4mo u npu ModenuposaHuu niomHocmu. [TodpobHoe onucaHue coemecmHol UHEEPCUU CM. 8 [24]
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Fig. 9. Relationship among density, velocity and properties of various rocks at depth (after Liu et al. [25])
| — sandstone; Il — basalt; Il — granite; IV-1 — neutral to acid schist or gneiss; IV-2 — neutral to basic schist or gneiss;
V — granulite; VI — gabbro; VII — peridotite; VIIl — eclogite; A — upper crust; B — middle crust; C — lower crust
Puc. 9. Bzaumocesizb Mex0y nIOMHOCMbI, CKOPOCMbIO U ceolicmeamu
pasnu4Hbix Nopod Ha any6uHe (no Jlto u dp. [25])
| — necyaruk; Il — 6azanbm; Il — epaHum; IV-1 — om HelimpanbHo20 A0 KUC020 craHya unu eHelca;
IV-2 — om HelimpanbH020 00 OCHOBHO20 CriaHya unu eHelica; V— epaHynum; VI — 2a6bpo; VIl — nepudomum;
VIl — aknoeum; A — eepxHas kopa; b — cpedHss kopa; C — HUXHSIS Kopa

Basement parameters along the Emin — Qitai profile
MapameTpbl pyHaameHTa no npocunto AMuHb — Lintan

Range 0-135 | 135-160 | 160-210 | 210-250 | 250-355 | 355-405 | 405-445 | 445-540 | 540-610
Velocity 6.10 6.15 6.25 6.30 6.17 6.30 6.30 6.17 6.15
Density 2.65 2.65 2.65 2.74 2.65 2.65 2.65 2.65 2.65
Mag-intensity| 62-120 | 62-72 75-122 80-135 | 151-179 176 180 127 141
Granite,
Rock Granite | Granite Granite SCh'S.t’ Granite Granite Granite Granite Granite
granulite,
gabbro

the sub-oceanic mantle and not from a craton
continental basement. No known Precambrian
strata have yet been discovered around the ba-
sin. However, Paleozoic oceanic rocks and relic
oceanic sediments of the middle Paleozoic age
are widely distributed. To the south of the Kara-
may fault the paleocurrent is directed to the
north as shown by imbricated clasts and groove
marks in turbidities of continental shelf facies
from the Silurian age. This also suggests that
the provenance of these strata were pre-Silurian
continental blocks. Furthermore, the prove-
nances were probably not the small blocks
made up of mafic volcanic rocks that date to the
Ordovician or Cambrian ages [12].

The aeromagnetic anomaly of the Junggar
basin shows that the southern part of the basin

leonorus, noMcku u passegka MeCTOpO)K,CIeHVIVI noJie3HbIX UCKOoNaeMbIX |

(Manas terrane) has much stronger magnetism,
which is in agree with the magnetization of Pre-
cambrian schist, migmatites, granites, and horn-
blende schist. However, the results of joint in-
version of gravity with aeromagnetism show that
these high aeromagnetic anomalies may be
produced by ancient blocks or the NNE trending
faults resulting from modern north-south com-
pression. These faults potentially provide chan-
nels for deep material to move up into the crust,
and subsequently intrude laterally into different
sub-layers of crust. This would change the con-
tents of the Junggar basement, resulting in the
higher average velocity, density, and magnetism
observed in the crust of the basin. These intru-
sions may have originated as oceanic basalt
and tholeiite. Based on the 1:200000 gravity
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anomaly map of Xinjiang [29], there are two
gravity gradient zones in the northern and
southern margins of the Junggar basin, which
clearly delineate the shape of basin. This is in
agreement with the landscape and geological
framework. The 2-D velocity and density struc-
tures along the Xayar-Burjing profile indicate
that the crustal thickness is about 47 km in the
Junggar basin. This thickness however, includes
the 15 km thick sediments that have accumulat-
ed since the Devonian era. The thickness of the
Mesozoic and Cenozoic sediments alone is
greater than 11 km. Not taking into account the
sediments, the crustal thickness of the crystal-
line basement of the Junggar basin is only 32 km.
The 2-D density structure of the Xayar-Burjing
profile [21] shows that the density of the base-
ment roof of the Junggar basin is different in the
Wulungu and Manasi terrains; the density and
velocity of the former is 2.87 g/cm?® and 5.9
km/s, while that of the latter is about 2.85 g/cm?
and 5.8 km/s.

Geological Interpretation

Based on the 2D velocity (Fig. 5, b), 2D den-
sity (Fig.8,a) and 2D magnetic intensity
(Fig. 8, b), and combined with geological and
geochemical analysis [8] we developed a final
model as Fig. 10.

Vertically, the crust is composed of three
layers: the upper, middle and lower crust, bot-
tomed by the C1, C2 and Moho interfaces, re-
spectively. The upper layer of the upper crust
consists the deposited cover bottomed by the
interface G, and the lower layer bottomed by the
interface C1. The sedimentary cover ranges in
thickness from 1 km to 12 km and reaches a
maximum depth of 12 km, while the crystalline
basement ranges in thickness from approxi-
mately 12 km to 20 km and reaches a maximum
depth of ~ 30 km. The velocity in the deposited
cover undergoes large lateral variations, espe-
cially near Karamay, Hutub and Fukang (Fig. 5).
In addition, the density and the magnetic intensi-
ty also change greatly (Fig. 8). The crystalline
basement exhibits high velocity zones, including
a region near Hutub, at ~ 20 km depth, where
velocities are 0.1~0.2 km/s higher than sur-
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rounding medium, and so as the density and
geomagnetic intensity.

The middle crust, defined by the interfaces
Ci and Cz, is comparatively thin, with thickness-
es ranging from 4 km to 15 km and a maximum
depth of 37 km. Slight variation occurs on veloci-
ty, except for a low velocity zone beneath Kara-
may and Fukang, where the corresponding den-
sity is low. The middle crust has a dumbbell
shape, i.e. thin in the middle and thick at the two
ends of the profile.

Obvious lateral variations are obtained in the
lower crustal velocity. The most complex regions
lay beneath the Karamay and Fukang, which are
two active tectonic zones in the Junggar basin?.
Here, two low velocity zones with low densities
have developed, near which developed several
faults cutting up the crust. The lower crust is fur-
ther characterized by uniform thickness of
roughly 15 km, despite having heterogeneous
composition [21]. The crustal thickness of the
Junggar basin ranges from 46 to 56 km.

Below the Moho interface, the uppermost
mantle of the Junggar basin varies in shape of
the velocity contours. The contours at the up-
permost mantle are convex, indicating that the
velocity is higher at the center of the basin than
that at its either side [30]. It may further suggest
that the upper mantle material may inject into
the crust of the Junggar basin, because of the
similar rock distribution along the profile (Fig. 10,
Table). The Earth’s topography at short wave-
lengths results from active tectonic processes,
whereas at long wavelengths it is largely deter-
mined by isostatic adjustment for the density
and thickness of the crust [30].

On these interfaces, we found several sec-
tions from which the seismic waves are very
weak, indicating a lower reflection coefficient
(Fig. 3). This may reflect the presence of deep
faults, which could be confirmed by the com-
bined results of seismic velocity (wide angle re-
flection/refraction profiling, (Fig. 5), density, ge-
omagnetic intensity (joint inversion of gravity
with aeromagnetism (Fig. 8), P-wave imaging?
and seismic converted wave profile crossing the
northern part of the basin [24]. All these faults,
with little reflectivity and no obvious dislocation,

1Xu Y. Seismic tomography for northwestern China and its tectonic implication: Ph.D dissertation. Institute

of Geophysics, CAS, 1999.
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600km
0

from Emin to Qitai developed several N-S trending blind faults, which are located at the lower part of the upper crust,

the middle crust and the lower crust and cut up the Moho. These faults, with high seismic velocity and without obvious
dislocation, are considered as “extensional” faults, formed by north-south compression and east-west extension.
These deeply rooted faults provide channels for basic to ultra-basic rocks from upper mantle migrating into the crust
and mixed up with the crustal material, causing the crust of the basin with thin thickness,
high seismic velocities, high densities and high magnetic intensities
Puc. 10. M'eonozuyeckass unmepnpemayus npogusns om ImuHs do Ljumas
B sepxHel yacmu pucyHKa rokasaHbl 2pagumayUoHHbIE U 260MagHUMHbIE aHOMaruu, U3MepeHHbIe U paccyumaHHble

Meonorus, NoMcku u pasesefka MeCTOPOXAEHMI NONe3HbIX UCKoNnaeMbIX

fpu nomowu annpokcumayuu. B HuxHel yacmu, 20e rnoka3aH 2eonoauyeckuli hoH U daHbl ycroeHble 0603HaYeHusl,

Oaemcsi eeonozuyeckas uHmepnpemauus npoguns om AMuHs 0o Llumas Ha ocHoge 2D-cmpykmypbl cKopocmu,
2D-cmpykmypbl nnomHocmu u 2D-cmpyKkmypbl Ma2HUMHOU HanpsKEHHOCMU 8 COYemaHuU C 2e0102U4ECKUM
U 2e0xumu4eckum aHanusom. HYepHbie mpeyeonbHUKU 0603Ha4Yaom o4aeu celicMuyeckoeo 83pbiga. BOosb nonepeyHo-

20 pa3spesa 0nuHol ~ 600 km om SmuHs do Ljumas cchopmMupo8anock HECKOIbKO CEMbIX Pa3fioMos npocmupaHuem
C cesepa Ha 102, Komopble pacronoXeHbl 8 HUXHeU Yacmu eepxHel Kopbl, 8 cpedHel Yyacmu Kopbl U 8 HUXHEU Kope
u paspesatom Moxo. Obnadas 8bICOKOU CeliCMUYECKOU CKOPOCMbIO U He uMesi 8UOUMBbIX Aucrokayuli, 3mu pasnombi

paccmampusaromcesl Kak «pa3fioMbl pacmsixxeHUs», 06pa3osaHHble CXamueM C cegepa Ha te U pacmskeHuem
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ropod u3 eepxHel MaHMUU 8 KOpy, e0e OHU CMeWusarmcs ¢ MamepuaaoM 3eMHOU Kopbl, 8 pe3ynbmame

yeeo Kopa bacceliHa cmaHO8UMCS MOHKOU, npuobpemaem 8bICOKUE CElCMUYECKUE CKOPOCMU,
8bICOKYH0 MIIOMHOCMb U 8bICOKYH Ma2HUMHYH Hanps»KEHHOCMb
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are considered as “extension” faults. They de-
veloped with a high angle in the middle and low-
er crust and extended upwards into the lower
parts of upper crust. They were formed probably
by the collision of the Junggar basin with the
Tarim basin at the end of Permian [21].
Horizontally, the southern Junggar basin
along the profile can be divided into three sec-
tions, which are the western section (0-150 km),
the central section (150-420 km) and the east-
ern section (420-600 km), based on the velocity,
the density and geomagnetic structures (Fig. 8).
In the western section, i.e. the western mountain
area, the tectonic activities are more active,
where developed many faults. The velocity dis-
tribution is complicated with several low velocity
zones formed in the middle crust and lower
crust, respectively. The densities in the low ve-
locity zone are lower, but the magnetic intensi-
ties are complex, featured by high frequency of
geomagnetic anomalies. In the central section,
mostly the Junggar basin, the velocity, the den-
sity and geomagnetic intensity are consistently
high, especially in the lower part of the upper
crust and the middle crust. In this section, the
Moho interface sinks down and the uppermost
mantle uplifted. In the eastern part of our profile,
the velocity, the density and geomagnetic inten-
sity are relatively low at the eastern margin of
the basin, with two lower velocity zones devel-
oped in the middle and lower crust, respectively.
Geologically, the evolution of the Tianshan
Orogen and Junggar basin can be divided into
several stages: the early Paleozoic intra-oceanic

Earth sciences and subsoil use / ISSN 2686-9993 (print), 2686-7931 (online)

arc evolution, the Early Devonian and later Mid-
dle Devonian rifting evolution of the Junggar
ocean, formed from the rifting of the early
Paleozoic folded basement, the relic ocean from
Later Devonian to late Carboniferous, and the
final accretion orogeny in the late Carbonifer-
ous-early Permian [8]. We infer that this final
accretion orogeny in the late Carboniferous-
early Permian was so strong that some deep
faults with S-N direction were formed by S-N
compression and E-W extension. In such pro-
cess, the hot materials from upper mantle mi-
grated to the crust through the deep faults and
mixed up with the crustal materials in the central
basin, which could be further approved by the
high velocity, high density and high geomagnetic
intensity beneath the basin. The two low velocity
zones at both sides of the basin may be attribut-
ed to the heat from upper mantle.

The exchange of the materials or energy of
the uppermost mantle with those in the crust is
manifested by the heat evolution of the basin.
Based on the heat flow variations of the basins
in northwestern China since Paleozoic time [31],
the heat flow of the Junggar basin since Carbon-
iferous-Permian  reduced gradually  from
120~150 mW.m?2to 52 mW.m2 at present, while
that of the Tarim basin, the Qaidam basin and
the Sichuan basin almost keep the same value
of 45 mW.m2, even with a tendency of increase.
Therefore, we infer that the high heat value of
the Junggar basin may have been caused by
the hot materials from the upper mantle mixing
the crystalline basement of the Junggar basin.
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