Preview

Earth sciences and subsoil use

Advanced search

Surface structure of Amur region high grade native gold

https://doi.org/10.21285/2686-9993-2021-44-1-39-47

Abstract

The purpose of the research is to study the surface structure of high grade gold. The subject of research is gold ore fields in the Amur region. The object of the study is samples of native high grade gold grains from these fields. The study uses the methods of thermodynamics and X-ray electron microscopy. The study results in revealing a multilayer structure of the surface of high grade minerals of the Amur region native gold with the following levels: a boundary layer with zero oxidation degree Au0 in the form of yellow metallic gold; an oxide layer with the oxidation degree Au+1 in the form of purple Au2O; an oxide layer with the oxidation degree Au+3 in the form of a yellow-brown Au2O3; a hydrated oxide layer with the oxidation degree Au+3 in the form of a red-yellow-brown Au(OH)3. The methods of electron microscopy have allowed to identify external surface structures – dense oxide layers of the form of Au2O3 and loose hydrated layers of the form of Au(OH)3, whereas the inner layers of metallic and monovalent gold are not visible. Important thermodynamic characteristics of the presented levels are the values of standard oxidation-reduction potentials (E°), which determine their physicochemical properties: for metallic gold E° = +1.68 V; for the oxide layer with the oxidation degree Au+1 in the form of Au2O – E° = +0.32 V; for the oxide layer with the oxidation degree Au+3 in the form of Au2O3 – E° = +1.36 V; for the hydrated oxide layer with the oxidation degree Au+3 in the form of Au(OH)3 – E° = +0.7 V. The results of the conducted studies indicate that the surface structure has several layers that lower the oxidation-reduction potential, which explains the generation and formation of migratory forms of gold in humid hypergene conditions of natural environment.

About the Authors

S. M. Radomskiy
Institute of Geology and Nature Management, Far Eastern Branch of the Russian Academy of Sciences
Russian Federation

 Sergey M. Radomskiy, Cand. Sci. (Geol. & Mineral.), Researcher of the Ore Genesis Laboratory

1 Relochy Lane, Blagoveschensk 675000 



V. I. Radomskaya
Institute of Geology and Nature Management, Far Eastern Branch of the Russian Academy of Sciences
Russian Federation

 Valentina I. Radomskaya, Cand. Sci. (Chemistry), Leading Researcher of the Laboratory of Biogeochemistry

1 Relochy Lane, Blagoveschensk 675000 



References

1. Blowes DW, Ptacek CJ, Jambor JL, Weisener CG. The geochemistry of acid mine drainage. In: Holland HD, Turekian KK (eds.). Environmental geochemistry. Vol. 9. Oxford: Elsevier-Pergamon; 2003. p.149–204.

2. Sato M. Persistency-field Eh-pH diagrams for sulfides and their application to supergene oxidation and enrichment of sulfide ore bodies. Geochimica et Cosmochimica Acta. 1992;56(8):3133–3156.

3. Garrels RM, Christ CL. Solutions, minerals and equilibria; 1965. 450 p. (Russ. ed.: Rastvory, mineraly, ravnovesiya. Moscow: Mir; 1968. 368 p.).

4. DiCenzo SB, Berry SD, Hartford Jr EH. Photoelectron spectroscopy of single-size Au clusters on a substrate. Physical Review B. 1988;38(12):8465–8468. https://doi.org/10.1103/physrevb.38.8465

5. Brown PA, Gill SA, Allen SJ. Metal removal from wastewater using peat. Water Research. 2000;34(16): 3907–3916. https://doi.org/10.1016/S0043-1354(00)00152-4

6. Jambor JL. Mineralogy of sulfide rich tailings and their oxidation products. In: Jambor JL, Blowes DW (eds.). Environmental geochemistry of sulfide mine-waters. Vol. 22. Waterloo: Mineralogical Association of Canada; 1994. p.59–102.

7. Radomskiy SM, Radomskaya VI. The mechanism of native gold mineral aggregate formation. Vestnik Tomskogo gosudarstvennogo universiteta = Tomsk State University Journal. 2015;392:209–214. https://doi.org/10.17223/15617793/392/35

8. Puddephatt RJ. The chemistry of gold; 1987. 284 p. (Russ. ed.: Paddefet R. Khimiya zolota. Moscow: Mir; 1982. 264 p.).

9. Hiemstra T, van Riemsdijk W.H. Surface structural ion adsorption modeling of competitive binding of oxyanions by metal (hydr)oxides. Journal of Colloid and Interface Science. 1999;210(1):182–193. https://doi.org/10.1006/jcis.1998.5904

10. Barrow NJ, Bowden JW. A comparison of models for describing the adsorption of anions A on a variable charge mineral surface. Journal of Colloid Interface Science. 1987;119(1):236–250. https://doi.org/10.1016/0021-9797(87)90263-3

11. Al'bov MN, Bybochkin AM. Mining geology. Moscow: Nedra; 1973. 430 p. (In Russ.)

12. Ivensen YuP, Levin VI. Genetic gold mineralization and gold ore formations. In: Ivensen YuP (ed.). Zolotorudnye formatsii i geokhimiya zolota Verkhoyano-Chukotskoi skladchatoi oblasti = Gold ore formations and geochemistry of gold in the Verkhoyansk-Chukotka folded region. Moscow: Nauka; 1975. p.5–120. (In Russ.)

13. Schneiderhohn H. Erzlagerstatten. Kurzvorlesungen zur einfuhrung und zur wiederholung; 1944. 290 s. (Russ. ed.: Shneiderkhen G. Rudnye mestorozhdeniya. Moscow: Inostrannaya literatura; 1958. 501 p.).

14. Radomskyii SM. Natural migration potential of noble metals of Mongol-Okhotsk gold belt. Izvestiya Tomskogo politekhnicheskogo universiteta. Inzhiniring georesursov = Bulletin of the Tomsk Polytechnic University. Geo Аssets Engineering. 2017;328(1):29–38. (In Russ.)

15. Radomskii SM, Radomskaya VI. Equilibrium operation factors of noble metals in oxidation process. Estestvennye i tekhnicheskie nauki = Natural and technical sciences. 2010;4:166–170. (In Russ.)

16. Radomskii SM, Radomskaya VI, Moiseenko NV, Moiseenko VG. Noble metals in landscapes of the AmurZeya plain in Priamurye. Doklady Akademii nauk. 2008;422(5):665–667. (In Russ.)

17. Rietra RPJJ, Hiemstra T, van Riemsdijk WH. The relationship between molecular structure and ion adsorption on variable charge minerals. Geochimica et Cosmochimica Acta. 1999;63(19-20):3009–3015. https://doi.org/10.1016/S0016-7037(99)00228-8

18. Blowes DW, Ptacek CJ, Jambor JL, Weisener CG, Paktunc D, Gould WD, et al. The geochemistry of acid mine drainage. In: Holland HD, Turekian KK (eds.). Treatise on geochemistry. Vol. 9. Oxford: Elsevier; 2003. p.149–204.

19. Radomskii SM, Radomskaya VI. The ratio of ion and metal forms of noble metals at gold-silver layer Pokrovskoe (Upper Amur region). Gornyi informatsionnoanaliticheskii byulleten' (nauchno-tekhnicheskii zhurnal) = Mining informational and analytical bulletin (scientific and technical journal). 2013;1:128–134. (In Russ.)

20. Davis JA, Leckie JO. Surface ionization and complexation at the oxide/water interface II: Surface properties of amorphous iron oxyhydroxide and adsorption of metal ions. Journal of Colloid and Interface Science. 1978;67(1):90–107. https://doi.org/10.1016/0021-9797(78)90217-5

21. Dutrizac JE, Jambor JL. Jarosites and their application in hydrometallurgy. Reviews in Mineralogy and Geochemistry. 2000;40(1):405–452. https://doi.org/10.2138/rmg.2000.40.8

22. Hiemstra T, van Riemsdijk WH. A surface structural approach to ion adsorption: the charge distribution (CD) model. Journal of Colloid Interface Science. 1996;179(2):488–508. https://doi.org/10.1006/jcis.1996.0242

23. Scaini MJ, Bancroft GM, Knipe SW. Reactions of aqueous Au1+ sulfide species with pyrite as a function of pH and temperature. American Mineralogist. 1998;83:316–322.

24. Widler AM, Seward TM. The adsorption of gold (I) hydrosulfide complexes by iron sulhide surface. Geochimica et Cosmochimica Acta. 2002;66(3):383–402.


Review

For citations:


Radomskiy S.M., Radomskaya V.I. Surface structure of Amur region high grade native gold. Earth sciences and subsoil use. 2021;44(1):39-47. (In Russ.) https://doi.org/10.21285/2686-9993-2021-44-1-39-47

Views: 320


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2686-9993 (Print)
ISSN 2686-7931 (Online)