Preview

Earth sciences and subsoil use

Advanced search

Forecasting groundwater rise in the historic downtown area of Irkutsk city

https://doi.org/10.21285/2686-9993-2022-45-2-172-183

Abstract

The purpose of this investigation is to develop an analytical model for predicting the groundwater level rise due to the barrage effect. Processing of a significant volume of production decisions for multiple objects has resulted an analytical model that allows predicting the dynamics of groundwater rise due to the barrage effect when building deep foundation structures. The study has been conducted for the downtown areas of Irkutsk and other cities of Eastern Siberia. Prediction schemes for the groundwater level formation have been made, and an assessment of the study areas by their underflooding conditions has been carried out. Being adequately simple and multi-purpose. The analysis of the research results shows that the hydraulic gradient of the underground water flow and the project structure width have the biggest effect on the groundwater rise. Vertical planning of the territory and the use of pile foundations play a significant role in the formation of the groundwater level. Besides, when evaluating the depth of the underground water formation level and developing the prevention and protection measures, it is necessary to take into account the seasonal rise of the underground waters. The developed model can be applied in the corresponding geological and hydrogeological conditions.

About the Author

L. I. Auzina
Irkutsk National Research Technical University
Russian Federation

 Larisa I. Auzina, Cand. Sci. (Geol. & Mineral.), Associate Professor,
Assosiate Professor of the Department of Applied Geology

Irkutsk 



References

1. Davies J. A. Groundwater control in the design and construction of a deep excavation. Proceedings of the 9th European Conference on Soil Mechanics and Foundation Engineering. 1987;1:139-144.

2. Abu-Rizaiza O. S., Sarikaya H. Z., Ali Khan M. Z. Urban groundwater rise control: case study. Journal of Irrigation and Drainage Engineering. 1989;115(4):588-607. https://doi.org/10.1061/(ASCE)0733-9437(1989)115:4(588).

3. Whitaker D. Groundwater control for the Stratford CTRL station box. Proceedings of the Institution of Civil Engineers. Geotechnical Engineering. 2004;157(4):183-191. https://doi.org/10.1680/geng.2004.157.4.183.

4. Preene M., Loots E. Optimisation of dewatering systems. Proceedings of the 16th ECSMGE. Geotechnical Engineering for Infrastructure and Development. 2015: 2841-2846.

5. Preene M., Roberts T. O. L. Groundwater control for construction in the Lambeth Group. Proceedings of the Institution of Civil Engineers. Geotechnical Engineering. 2002;155(4):221-227. https://doi.org/10.1680/geng.2002.155.4.221.

6. Davis G. M., Horswill P. Groundwater control and stability in an excavation in Magnesian Limestone near Sunderland, NE England. Engineering Geology. 2002;66 (1-2):1-18.

7. Long M., Murphy M., Roberts T. O. L., O’Brien J., Clancy N. Deep excavations in water-bearing gravels in Cork. Quarterly Journal of Engineering Geology & Hydrogeology. 2015;48(2):79-93.

8. Preene M., Fisher S. Impacts from groundwater control in urban areas. Proceedings of the 16th ECSMGE. Geotechnical Engineering for Infrastructure and Development. 2015:2847-2852.

9. Pokrovsky V., Pokrovsky D., Dutova E., Nikitenkov A., Nazarov A. Degree of areal drainage assessment using digital elevation models. IOP Conference. Series: Earth and Environmental Science. 2014;21:012018. https://doi.org/10.1088/1755-1315/21/1/012018.

10. Shen'kman B. M., Sholokhov P. A., Shen'kman I. B. Underfllooding of Irkutsk with groundwaters. Geografiya i prirodnye resursy. 2011;2:54-62. (In Russ.).

11. Lonshakov G. S., Auzina L. I. Evaluation of determining factors of underground hydrosphere evolution within urban areas (on the example of Irkutsk). Izvestiya Tomskogo politekhnicheskogo universiteta. Inzhiniring georesursov = Bulletin of the Tomsk Polytechnic University. Geo Assets Engineering. 2017;328(11):50-59. (In Russ.).

12. Lonshakov G. S., Auzina L. I. Method of integral geoecological evaluation of the underground hydrosphere sustainability within the territory of Irkutsk city. In: Environmental and engineering aspects for sustainable living: International symposium. Hannover: EWG e.V; 2017, p. 18–20.

13. Auzina L. I. Engineering geology and hydrogeology in an urban environment of East Siberia, Russia. In: 8th International IAEG congress. Rotterdam: Balkema; 2000, vol. 6, p. 4521–4525.

14. Kuranov N. P., Muftakhov A. Zh. Underflooding areas of big cities: a review. Moscow: Moscow Urban Territorial Center for Scientific and Technical Information and Propaganda; 1986. 27 p. (In Russ.).

15. Auzina L. I., Parshin A. V. System-integrated GISbased approach to estimating hydrogeological conditions of oil-and-gas fields in Eastern Siberia. IOP Conference. Series: Earth and Environmental Science. 2016;33: 012060. https://doi.org/10.1088/1755-1315/33/1/012060.

16. Auzina L. I., Serova G. E. Effect of technogenic underflooding on stability of soil foundations and structures in Irkutsk. In: Gorod: proshloe, nastoyashchee, budushchee = City: past, present, future. Irkutsk: Irkutsk State Technical University; 2000, p. 124–128. (In Russ.).

17. Klamer M., Druzhinina I. E., Glebova N. M. Arrangement peculiarities of Ushakovka river in Irkutsk and its natural potential. Izvestiya vuzov. Investitsii. Stroitelstvo. Nedvizhimost = Proceedings of Universities. Investment. Construction. Real estate. 2017;7(2):117-125. (In Russ.).

18. Lobatskaya R. M., Strelchenko I. P. Gis-based analysis of fault patterns in urban areas (a case study of Irkutsk city). Vestnik Irkutskogo gosudarstvennogo tehnicheskogo universiteta = Proceedings of Irkutsk State Technical University. 2014;11:76-88. (In Russ.).

19. Bolshakov A., Surodina A., Maksimova E. The landscape congruity principle in urban planning. Proekt Baikal. 2016;49:54-59. https://doi.org/10.7480/projectbaikal.49.1050.

20. Gavich I. K., Zektser I. S., Kovalevskii V. S., Yazvin L. S., Pinneker E. V., Bondarenko S. S., et al. Fundamentals of hydrogeology. Hydrogeodynamics. Novosibirsk: Nauka; 1984. 242 p. (In Russ.).

21. Lukner L., Shestakov V. M. Geofiltration modeling. Moscow: Nedra; 1976. 408 p. (In Russ.).

22. Lomize G. M. Filtration in fractured rocks. Moscow: Gosenergoizdat; 1951. 127 p. (In Russ.).

23. Abramov S. K., Degtyarev B. M., Dzektser E. S., et al. Prediction and prevention of groundwater logging in construction. Moscow: Stroiizdat; 1978. 177 p. (In Russ.).

24. Auzina L. I. Predicting groundwater rise in historical centres of Eastern Siberian cities. Nauki o Zemle i nedropol'zovanie = Earth sciences and subsoil use. 2021;44(1):73-84. (In Russ.) https://doi.org/10.21285/2686-9993-2021-44-1-73-84.

25. Belov A. A., Kiryushin A. V., Maskaykin V. N. Engineering preparation of urban area under flooding. Nauchnoe obozrenie. 2017;1. Available from: https://elibrary.ru/download/elibrary_28840909_78018777.pdf[Accessed 09th March 2022]. (In Russ.).

26. Sologaev V. I. Filtration calculations and computer modeling for groundwater logging protection in urban construction. Omsk: Siberian State Automobile and Highway University; 2002. 416 p. (In Russ.)


Review

For citations:


Auzina L.I. Forecasting groundwater rise in the historic downtown area of Irkutsk city. Earth sciences and subsoil use. 2022;45(2):172-183. (In Russ.) https://doi.org/10.21285/2686-9993-2022-45-2-172-183

Views: 356


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2686-9993 (Print)
ISSN 2686-7931 (Online)