Preview

Earth sciences and subsoil use

Advanced search

Applications of high-resolution seismic frequency and phase attribute analysis techniques

https://doi.org/10.21285/2686-9993-2022-45-4-324-344

Abstract

Seismic prospecting for oil and gas exploration and development is limited by seismic data resolution. Improving the accuracy of quantitative interpretation of seismic data in thin layers, thereby identifying effective reservoirs and delineating favorable areas, can be a key factor for successful exploration and development. Historically, the limit of seismic resolution is usually assumed to be about 1/4 wavelength of the dominant frequency of the data in the formation of interest. Constrained seismic reflectivity inversion can resolve thinner layers than this assumed limit. This leads to a series of highresolution quantitative interpretation methods and techniques have been developed. Case studies in carbonates, clastic, and unconventional reservoirs indicate that the application of quantitative interpretation techniques such as high-resolution seismic frequency and phase attribute analysis can resolve and allow/or allow quantitative estimation of rock and fluid properties in such seismically thin layers. Band recovery using high resolution seismic processing technology can greatly improve the ability to recognize geological details such as thin layers, faults, and karst caves. Multiscale fault detection technology can effectively detect small-scale faults in addition to more readily recognized large-scale faults. Based on traditional seismic amplitude information, high-resolution spectral decomposition and phase decomposition technology expands seismic attribute analysis to the frequency and phase dimensions, boosting the interpretable geological information content of the seismic data including subsurface geological characteristics and hydrocarbon potential and thereby improving the reliability of seismic interpretation. These technologies, based on high-resolution quantitative interpretation techniques, make the identification of effective reservoirs more efficient and accurate.

About the Authors

Renqi Jiang
Beijing Carrie Oriental Petroleum Technology Company; Lumina Technologies
China

Renqi Jiang – Ph.D, Academician

Beijing;

Houston


Competing Interests:

The authors declare no conflicts of interests



John P. Castagna
University of Houston
United States

John P. Castagna – Ph.D, GeoPhysics Graduate Advisor,
Professor of Geophysics, Margaret S. and Robert E. Sheriff Endowed Faculty Chair in Applied Seismology

Houston


Competing Interests:

The authors declare no conflicts of interests



Jian Wu
The Research Institute of Petroleum Exploration and Development
China

Jian Wu – Dr. Petroleum Geology, Senior Geologist

Beijing


Competing Interests:

The authors declare no conflicts of interests



References

1. Du S. T. Seismic attribute analysis. Petroleum Geophysics. 2004;2(4):12-16.

2. Lu G. H., Yu C. Q, Dong N. The application of poststack seismic attribute analysis in the oil-gas exploration and development. Progress in Geophysics. 2006;21(1):161-166.

3. Castagna J. P. Recent advances in seismic lithologic analysis. Geophysics. 2001;66(1):42-46. https://doi.org/10.1190/1.1444918.

4. Puryear C. I., Castagna J. P. Layer-thickness determination and stratigraphic interpretation using spectral inversion: theory and application. Geophysics. 2008;73(2): 37-48. https://doi.org/10.1190/1.2838274.

5. Liang C., Castagna J. P., Torres R. Z. Tutorial: spectral bandwidth extension – invention versus harmonic extrapolation. Geophysics. 2017;82(4):1JA-Z33. https://doi.org/10.1190/geo2015-0572.1.

6. Castagna J. P., Sun J., Siegfried R. W. Instantaneous spectral analysis: detection of low frequency shadows associated with hydrocarbons. The Leading Edge. 2003; 22(2):120-127. https://doi.org/10.1190/1.1559038.

7. Zhang R., Castagna J. P. Seismic sparse-layer reflectivity inversion using basis pursuit decomposition. Geophysics. 2011;76(6):147-158. https://doi.org/10.1190/geo2011-0103.1.

8. Castagna J. P. Comparison of spectral decomposition methods. First Break. 2006;24(3):75-79. https://doi.org/10.3997/1365-2397.24.1093.26885.

9. Castagna J. P., Oyem A., Portniaguine O., Aikulola U. Phase decomposition. Interpretation. 2016;4(3):SN1. https://doi.org/10.1190/INT-2015-0150.1.

10. Widess M. B. How thin is a thin bed. Geophysics. 1973;38(6):1176-1180. https://doi.org/10.1190/1.1440403.

11. Chopra S., Castagna J. P., Portniaguine O. Seismic resolution and thin-bed reflectivity inversion. CSEG Recorder. 2006;11(2):19-25.

12. Mora D., Castagna J. P., Meza R., Chen S., Jiang R. Case study: seismic resolution and reservoir characterization of thin sands using multiattribute analysis and bandwidth extension in the Daqing field, China. Interpretation. 2020;8(1):1F-T215. https://doi.org/10.1190/INT-2019-0017.1.

13. Duan Y. X., Cao J., Sun Q. F. Application of autoadaptive dip-steering technique to fault recognition. Lithologic Reservoirs. 2017;29(4):101-107. https://doi.org/10.3969/j.issn.1673-8926.2017.04.012.

14. Tian T., Xia T. X., Yan T., et al. Application of formation dip in the fine description of fault: take A oilfield in Bohai bay basin as an example. Progress in Geophysics. 2017;32(5):2236-2240.

15. Xu D. K., Wang Y. Y., Zheng J. F. Dip steering coherent-enhancing filtering and its application on seismic data of complex fault-block. Progress in Geophysics. 2016;31(3):1224-1228. https://doi.org/10.6038/pg20160340.

16. Yin C., Du X. D., Zhao R. M., et al. Dip steered structure oriented filter and its application. Progress in Geophysics. 2014;29(6):2818-2822.

17. Yin X. Y., Gao J. H., Zong Z. Y. Curvature attribute based on dip scan with eccentric window. Chinese Journal of Geophysics. 2014;57(10):3411-3412.

18. Wang J., Wang R. Fault identification method based on variance-coherence cubes. Chinese Journal of Engineering Geophysics. 2016;13(1):46-51. https://doi.org/10.3969/j.issn.1672-7940.2016.01.008.

19. Li T. T., Hou S. Y., Ma S. Z., Li D. L. Overview and research progress of fault identification method. Progress in Geophysics. 2018;33(4):1507-1514. https://doi.org/10.6038/pg2018BB0311.

20. Huang C., Li P. F., Wang T. Y., et al. The application of seismic attribute analysis technology to the identification of small faults. Chinese Journal of Engineering Geophysics. 2016;13(1):41-45.

21. Zhen Z. Y., Zheng Y. F., Sun J. L., Gong M. Fault identification method based on the maximum likelihood attribute and its application. Progress in Geophysics. 2020;35(1):374-378. https://doi.org/10.6038/pg2020CC0515.

22. Qi J., Castagna J. P. Application of PCA fault-attribute and spectral decomposition in Barnett Shale fault detection. In: 83rd Annual International Meeting, SEG, Expanded Abstracts. 2013:1421-1425.

23. Han L., Zhang H., Wang J. S. Discrete frequency coherency technology for interpreting complicated faults and its application. Complex Hydrocarbon Reservoirs. 2016;9(4):16-21. https://doi.org/10.16181/j.cnki.fzyqc.2016.04.004.

24. Barbato U., Castagna J. P., Portniaguine O. Composite attribute from spectral decomposition for fault detection. In: 84th Annual International Meeting, SEG, Expanded Abstracts. 2014:2542-2546.

25. Chen G. F., Lu S. B. Application of RGB frequency division technology in the fault identification of fault-block reservoir. In: SEG Technical Program Expanded Abstracts 2014.Tulsa: Society of Exploration Geophysicists; 2014. P. 2542–2546.

26. Chen P., Wei X. D., Ren D. Z., et al. Small fault identification based on spectrum decomposition technique. Oil Geophysical Prospecting. 2010;45(6):890-894.

27. Ma C. J. Application of multi-scale edge detection technology to fault recognition and fracture zone prediction: a case study of Block Well P691, Chepaizi area. Petroleum Geology and Recovery Efficiency. 2021;28(2):85-90. https://doi.org/10.13673/j.cnki.cn37-1359/te.2021.02.011.


Review

For citations:


Jiang R., Castagna J.P., Wu J. Applications of high-resolution seismic frequency and phase attribute analysis techniques. Earth sciences and subsoil use. 2022;45(4):324-344. https://doi.org/10.21285/2686-9993-2022-45-4-324-344

Views: 415


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2686-9993 (Print)
ISSN 2686-7931 (Online)