Preview

Earth sciences and subsoil use

Advanced search

Methods to reduce residual welding stresses in mining excavator metal structures

https://doi.org/10.21285/2686-9993-2023-46-1-72-83

Abstract

Residual stresses in metal structures of mining machinery caused by welding occur due to simultaneous uneven heating and cooling of local sections of structures, variable cooling rates in the different areas of the weld and deformations caused by metallurgical phase transformations. Residual stress in the welded joint can significantly increase the external load that can lead to structural failure. Research on the calculation, measurement and relief of residual stresses under welding is an important issue when predicting the service life of metal structure units of mining machinery and equipment. An accurate quantitative estimation of residual stresses in welded products, repair welds included, as well as the search for the fundamental principles of the elimination methods of residual deformations are of considerable practical interest, which is relevant for the authors of this paper. The study involved a general review of the latest researches in the field of estimation and measurement of residual stresses caused by electrogas welding. It has been proposed to use various techniques and analytical methods for quantitative estimation of welded joint residual stresses on the basis of fracture mechanics, which enabled to take preventative measures at early stages to reduce the cost of repair and maintenance of welded metal structures of mining excavators. The conducted study resulted in formulating the proposals on relief of residual welding stresses in the metal structures of mining excavators.

About the Authors

A. P. Makarov
Irkutsk National Research Technical University
Russian Federation

 Anatoly P. Makarov, Cand. Sci. (Eng.), Associate Professor,
Associate Professor of the Department of Mining Machines and Electromechanical Systems, Institute of Subsoil Use

Irkutsk 



V. A. Khramovskikh
Irkutsk National Research Technical University
Russian Federation

 Vitaly A. Khramovskikh, Cand. Sci. (Eng.), Associate Professor, Associate Professor of the Department of Mining Machines and Electromechanical Systems, Institute of Subsoil Use

Irkutsk 



K. A. Nepomnyashchikh
Irkutsk National Research Technical University
Russian Federation

 Kirill A. Nepomnyashchikh, Postgraduate Student,
Assistant Professor of the Department of Mining Machines and Electromechanical Systems, Institute of Subsoil Use

Irkutsk 



References

1. Guo J., Fu H., Pan B., Kang R. Recent progress of residual stress measurement methods: a review // Chinese Journal of Aeronautics. 2021. Vol. 34. Iss. 2. P. 54–78. https://doi.org/10.1016/j.cja.2019.10.010.

2. Zerbst U., Ainsworth R.A., Beier H.Th., Pisarski H., Zhang Z.L., Nikbin K., et al. Review on fracture and crack propagation in weldments – a fracture mechanics perspective // Engineering Fracture Mechanics. 2014. Vol. 132. P. 200–276. https://doi.org/10.1016/j.engfracmech.2014.05.012.

3. Joseph A., Rai S.K., Jayakumar T., Murugan N. Evaluation of residual stresses in dissimilar weld joints // International Journal of Pressure Vessels and Piping. 2005. Vol. 82. Iss. 9. P. 700–705. https://doi.org/10.1016/j.ijpvp.2005.03.006.

4. Hensel J., Nitschke-Pagel T., Tchoffo Ngoula D., Beier H.-Th., Tchuindjang D., Zerbst U., Welding residual stresses as needed for the prediction of fatigue crack propagation and fatigue strength // Engineering Fracture Mechanics. 2018. Vol. 198. P. 123–141. https://doi.org/10.1016/j.engfracmech.2017.10.024.

5. Michaleris P., Dantzig J., Tortorelli D.A. Minimization of welding residual stress and distortion in large structures // Welding Journal. 1999. Vol. 78. Iss. 11. P. 361.

6. Xu S., Thermal Stress Analysis of dissimilar welding joints by Finite Element Method // Procedia Engineering. 2011. Vol. 15. P. 3860–3864. https://doi.org/10.1016/j.proeng.2011.08.722.

7. Larsen M.L., Arora V., Clausen H.B. Finite element shape optimization of weld orientation in simple plate structure considering different fatigue estimation methods // Procedia Structural Integrity. 2021. Vol. 31. P. 70–74. https://doi.org/10.1016/j.prostr.2021.03.011.

8. Ziva V.V., Kosukhina A.A., Osadchii S.O. Analysis of factors affecting the results of thermal analysis performed by the finite element method. Studencheskii forum. 2020;26:28-32. Available from: https://nauchforum.ru/archive/studjournal/26%28119%29.pdf [Accessed 15th December 2022]. (In Russ.).

9. Zanin A.V., Kvasov I.N. Analysis of tie-in calculations for the pipeline using ANSYS software and analysis with finite element method. Dinamika sistem, mekhanizmov i mashin = Dynamics of Systems, Mechanisms and Machines (Dynamics). 2019;7(2):103-113. (In Russ.). https://doi.org/10.25206/2310-9793-7-2-103-113.

10. Boriskina Z.M., Baryshnikova O.O. Analysis of the deformed state of hoisting and transport machine metal structures using the finite element method. In: Problemy mekhaniki sovremennykh mashin: materialy V Mezhdunar. konf. = Problems of modern machinery mechanics: materials of the 5th International conference. 25–30 July 2012, Ulan-Ude. Ulan-Ude: East Siberia State University of Technology and Management; 2012, vol. 2, pt. 1, p. 53–56. (In Russ.).

11. Liu F., Tao C., Dong Z., Jiang K., Zhou S., Zhang Z., et al. Prediction of welding residual stress and deformation in electro-gas welding using artificial neural network // Materials Today Communications. 2021. Vol. 29. P. 102786. https://doi.org/10.1016/j.mtcomm.2021.102786.

12. Mathew J., Moat R.J., Paddea S., Fitzpatrick M.E., Bouchard P.J. Prediction of residual stresses in girth welded pipes using an artificial neural network approach // International Journal of Pressure Vessels and Piping. 2017. Vol. 150. P. 89–95. https://doi.org/10.1016/j.ijpvp.2017.01.002.

13. Na M.-G., Kim J.-W., Lim D.-H. Prediction of residual stress for dissimilar metals welding at nuclear power plants using fuzzy neural network models // Nuclear Engineering and Technology. 2007. Vol. 39. Iss. 4. P. 337–348. https://doi.org/10.5516/NET.2007.39.4.337.

14. Makarov A.P. Development of fatigue cracks in excavator metal structures. Vestnik Irkutskogo gosudarstvennogo tekhnicheskogo universiteta = Proceedings of Irkutsk State Technical University. 2011;11:105-109. (In Russ.).

15. Makarchuk A.V., Makarchuk N.V., Startsev V.N. Mathematical model elaboration of multi-pass arc welding. Vestnik Gosudarstvennogo universiteta morskogo i rechnogo flota imeni admirala S.O. Makarova. 2017;1:121-131. (In Russ.).

16. Serenko O.M. Estimation of effects of residual stresses on kinetics of fatigue cracks development in welded joints. Part 1. Vestnik Priazovskogo gosudarstvennogo tekhnicheskogo universiteta. Seriya: Tekhnicheskie nauki = Reporter of the Priazovskyi State Technical University. Section: Technical sciences. 2011;22:156-161. (In Russ.).

17. Zavorin A.S., Lyubimova L.L., Buvakov K.V., Kulesh A.S., Tashlykov A.A., Kulesh R.N. Influence of residual stresses on resistance to brittle fracture in weldment zones. Izvestiya Tomskogo politekhnicheskogo universiteta. Inzhiniring georesursov = Bulletin of the Tomsk Polytechnic University. Geo Assets Engineering. 2018;329(10):128-142. (In Russ.). https://doi.org/10.18799/24131830/2018/10/2112.

18. Avdeev A.N., Khramovskikh V.A. Analysis of failures of excavator basic units operating in the Far North. Gornoe oborudovanie i elektromekhanika = Mining Equipment and Electromechanics. 2005;1:53-55. (In Russ.).

19. Khramovskikh V.A. Estimating service life of mining excavator basic unit metal structures based on statistical information processing. Vestnik Irkutskogo gosudarstvennogo tekhnicheskogo universiteta = Proceedings of Irkutsk State Technical University. 2005;1:167. (In Russ.).

20. Hensel J., Nitschke-Pagel T., Tchoffo Ngoula D., Beier H.-Th., Tchuindjang D., Zerbst U. Welding residual stresses as needed for the prediction of fatigue crack propagation and fatigue strength. Engineering Fracture Mechanics. 2018;198:123-141. https://doi.org/10.1016/j.engfracmech.2017.10.024.

21. Makarov A.P. Shevchenko A.N., Pavlov A.M. Crack critical length determination in mining shovel metal structures. Vestnik Irkutskogo gosudarstvennogo tekhnicheskogo universiteta = Proceedings of Irkutsk State Technical University. 2015;12:57-63. (In Russ.).

22. Serebrennikov A.V., Demchenko I.I., Serebrennikov V.L. Assessment of the methods and devices for measuring mechanical stresses in the construction materials of the mining machines. Bezopasnost' truda v promyshlennosti = Monthly Journal of Research and Production. 2013;11:56-62. (In Russ.).

23. Panfilova O.R., Dyorina N.V., Velikanov V.S. Substantiation of parameters of metal struc-ture elements of mining transport machines. Izvestiya Ural'skogo gosudarstvennogo gornogo universiteta = News of the Ural State Mining University. 2020;2:110-116. https://doi.org/10.21440/2307-2091-2020-2-110-116.

24. Serebrennikov A.V., Demchenko I.I., Serebrennikov V.L., Levchenko E.A. Way of measurement of local tensions in the steel structures of mining machines. Bezopasnost' truda v promyshlennosti = Monthly Journal of Research and Production. 2016;6:42-46. (In Russ.).


Review

For citations:


Makarov A.P., Khramovskikh V.A., Nepomnyashchikh K.A. Methods to reduce residual welding stresses in mining excavator metal structures. Earth sciences and subsoil use. 2023;46(1):72-83. (In Russ.) https://doi.org/10.21285/2686-9993-2023-46-1-72-83

Views: 272


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2686-9993 (Print)
ISSN 2686-7931 (Online)