Preview

Earth sciences and subsoil use

Advanced search

Formation stages of the Kholodninskoye pyrite-polymetallic deposit ore zone

https://doi.org/10.21285/2686-9993-2023-46-2-201-211

EDN: RANYSC

Abstract

The Kholodninskoe pyrite-polymetallic deposit (Baikal-Patom plateau, Russia) was discovered in 1968, but the questions of its genesis still remain controversial. It is assumed that the explosive activity of volcanic apparatuses of the southern part of the Baikal-Muya zone as well as underwater exhalations of the scattered spreading zone of the back-arc basin could have most likely influenced the geochemical features of amagmatic deposits of the Bodaibo and Patom zones. 

To investigate the influence of underwater hydrothermal activity on the geochemical features of Neoproterozoic carbonbearing sediments of the Baikal Mountain region, the Olokit zone, which is a fragment of the spreading zone of the backarc basin, was chosen. According to the geochemical parameters, the sediments of the Itykit and Ondokskaya formations hosting the Kholodninskoye deposit fall into the sedimentation area of DalnyaTaiga period paleobasins. Having compared the development of sulfide mineralization of ore objects of the Bodaibo and Olokit structural-formation zones, the authors suggest the unity of deposit formation processes within the Baikal Mountain area. The presence of framboidal pyrite indicates that the early stages of ore formation of the Kholodninskoe hydrothermal-stratiform polymetallic deposit were synchronous with sedimentation. The source of deposit ore zone enrichment with zinc lead, silver and other elements typical for low- and medium-temperature associations was a hydrothermal solution of the scattered spreading zone of back-arc basins. It is likely that the explosive and exhalation activities of the southern Baikal-Muya zone within the studied region also spread further northward, thus influencing the formation of siderochalcophilic geochemical specialization of amagmatic black shale strata of the Bodaibo and Patom zones. 

About the Authors

Yu. I. Tarasova
Irkutsk National Research Technical University; A.P. Vinogradov Institute of Geochemistry SB RAS
Russian Federation

Yulia I. Tarasova, Cand. Sci. (Geol. & Mineral.), Senior Researcher of the Department of Ore Geology, Siberian School of Geosciences; Head of the Laboratory of Ore Formation Geochemistry and Geochemical Methods of Exploration

Irkutsk


Competing Interests:

The authors declare no conflicts of interests. 



A. E. Budyak
Irkutsk National Research Technical University; A.P. Vinogradov Institute of Geochemistry SB RAS
Russian Federation

Alexander E. Budyak, Cand. Sci. (Geol. & Mineral.), Head of the Department of Ore Geology, Siberian School of Geosciences; Deputy Director for Science

Irkutsk


Competing Interests:

The authors declare no conflicts of interests. 



References

1. Bogdanov Yu.A., Lisitsyn A.P., Sagalevich A.M., Gurvich E.G. Hydrothermal ore genesis of the ocean floor. Moscow: Nauka; 2006. 527 p. (In Russ.).

2. Distanov E.G., Kovalev K.R., Ponomarev V.G. Genetic features of the pyrite-polymetallic mineralization of the Northern Baikal region. In: Geologiya i poleznye iskopaemye v polose BAM Severnogo Pribaikal'ya = Geology and mineral resources in the Baikal-Amur Mainline belt of Northern Baikal region. Moscow: Nauka; 1983, p. 33–37. (In Russ.).

3. Ruchkin G.V., Donets A.I. Hydrogenic generation concept of ore-forming systems of stratiform lead-zinc deposits in carbonate strata. In: Fundamental'nye problemy geologii mestorozhdenii poleznykh iskopaemykh i metallogenii: trudy XXI Mezhdunar. nauch. konf., posvyashch. 100-letiyu so dnya rozhdeniya akad. V.I. Smirnova = Fundamental problems of mineral deposit geology and metallogeny: proceedings of the 21st International scientific con- ference devoted to the 100th birth anniversary of the Academician V.I. Smirnov. 26–28 January 2010, Moscow. Moscow: Lomonosov Moscow State University; 2010, p. 93–106. (In Russ.).

4. Budyak A.E., Skuzovatov S.Y., Tarasova Y.I., Wang K.L., Goryachev N.A. Common Neoproterozoic – early paleozoic evolution of ore-bearing sedimentary complexes in the southern Siberian craton. Doklady Akademii nauk. 2019;484(3):335-339. (In Russ.). https://elibrary.ru/mimdqw, https://doi.org/10.31857/S0869-56524843335-339.

5. Dobrovolskaya M.G., Eremin N.A. Metamorphism and the time of the lead-zink ores formation in the Kholodninskoe deposit (North-Pribaikal area). Vestnik Rossiiskogo universiteta druzhby narodov. Seriya: Inzhenernye issledovaniya = RUDN Journal of Engineering Research. 2010;1:30-35. (In Russ.). https://elibrary.ru/lkyfdv.

6. Rytsk E.Yu., Shalaev V.S., Rizvanova N.G., Krymskii R.Sh., Makeev A.F., Rile G.V. Olokit zone of the Baikal folded region: new isotopic-geochronological and petrogeochemical data. Geotektonika. 2002;1:29-41. (In Russ.). https://elibrary.ru/hltnhi.

7. Konnikov E.G., Tsygankov A.A., Vrublevskaya T.T. Baikal-Muya volcano-plutonic belt: structural-material complexes and geodynamics. Moscow: GEOS; 1999. 163 p. (In Russ.).

8. Stanevich A.M., Sovetov Yu.K., Kornilova T.A., Ga-lushkina I.O. Late Proterozoic microfossils and biotopes adjacent to the Sayan area (East Siberia). Novosti paleontologii i stratigrafii. 2006;47(9):9-19. (In Russ.).

9. Nemerov V.K., Stanevich A.M., Razvozzhaeva E.A., Budyak A.E., Kornilova T.A. Biogenic sedimentation factors of mineralization in the Neoproterozoic strata of the BaikalPatom region. Geologiya i geofizika. 2010;51(5):729-747. (In Russ.). https://elibrary.ru/mktvod.

10. Ignatiev A.V., Velivetskaya T.A., Budnitskiy S.Y., Yakovenko V.V., Vysotskiy S.V. and Levitskii V.I., 2018. Precision analysis of multisulfur isotopes in sulfides by femtosecond laser ablation GC-IRMS at high spatial resolution. Chemical Geology. 2018;493:316-326. https://doi.org/10.1016/j.chemgeo.2018.06.006.

11. Velivetskaya T.A., Ignatiev A.V., Yakovenko V.V., Vysotskiy S.V. An improved femtosecond laser ablation fluorination method for measurements of sulfur isotopic anomalies (Δ33S and Δ36S) in sulfides with high precision. Rapid Communications in Mass Spectrometry. 2019;33 (22):1722-1729. https://doi.org/10.1002/rcm.8528.

12. Chugaev A.V., Chernyshev I.V. Pb-Pb isotopic systematics of orogenic gold deposits of the Baikal-Patom folded belt (Northern Transbaikalia, Russia) and assessment of the role of the Neoproterozoic crust in their formation. Geochemistry International. 2017;55:1010-1021. https://doi.org/10.1134/S0016702917110040.

13. Dubinina E.O., Ikonnikova T.A., Chugaev A.V. Heterogeneity of the sulfur isotopic composition of pyrite at the Sukhoi Log deposit and its controlling factors. Doklady Akademii nauk. 2010;435(6):786-790. (In Russ.). https://elibrary.ru/ncawex.

14. Tarasova Yu.I., Budyak A.E., Ivanov A.V., Goryachev N.A., Ignatiev A.V., Velivetskaya T.A., et al. Indicator and isotope geochemical characteristics of iron sulfides from the Golets Vysochaishy deposit, East Siberia. Geology of Ore Deposits. 2022;64:503-512. https://doi.org/10.1134/S1075701522070108.

15. Chang Z., Large R.R., Maslennikov V., Sulfur isotopes in sediment-hosted orogenic gold deposits: evidence for an early timing and a seawater sulfur source. Geology. 2008;36(12):971-974. https://doi.org/10.1130/G25001A.1.

16. Konkin V.D., Donets A.I., Ruchkin G.V. Mineralogical-geochemical types and regional geological special characteristic of stratiform carbonate-hosted lead-zinc deposits. Otechestvennaya geologiya = National Geology. 2018;4:52-62. (In Russ.). https://elibrary.ru/kuvrgt, https://doi.org/10.24411/0869-7175-2018-10005.

17. Large R.R., Maslennikov V.V., Robert F., Dany- ushevsky L.V., Chang Z. Multistage sedimentary and metamorphic origin of pyrite and gold in the giant Sukhoi Log deposit, Lena Gold Province, Russia. Economic Geology. 2007;102(7):1233-1267. https://doi.org/10.2113/gsecongeo.102.7.1233.

18. Tarasova Yu.I., Budyak A.E., Chugaev A.V., Goryachev N.A., Tauson V.L., Skuzovatov S.Yu., et al. Mineralogical and isotope-geochemical (δ13С, δ34S and Pb-Pb) characteristics of the Krasniy gold mine (Baikal-Patom Highlands): constraining ore-forming mechanisms and the model for Sukhoi Log-type deposits. Ore Geology Reviews. 2020;119:103365. https://doi.org/10.1016/j.oregeorev.2020.103365.

19. Tarasova Y.I., Budyak A.E., Goryachev N.A., Ignatiev A.V., Velivetskaya T.A., Blinov A.V., et al. Typomorphism of pyrite from the Ugakhan gold deposit (BaikalPatom highlands). Doklady Rossiiskoi akademii nauk. Nauki o zemle. 2022;503(1):12-17. (In Russ.). https:// elibrary.ru/eojdko, https://doi.org/10.31857/S2686739722030136.

20. Palenova E.E., Belogub E.V., Plotinskaya O.Y., Novoselov K.A., Maslennikov V.V., Kotlyarov V.A., et al. Chemical evolution of pyrite at the Kopylovsky and Kavkaz black shale-hosted gold deposits, Bodaybo district, Russia: evidence from EPMA and LA-ICP-MS data. Geologiya rudnykh mestorozhdenii. 2015;57(1):71-92. (In Russ.). https:// elibrary.ru/tgwayx, https://doi.org/10.7868/S0016777015010025.


Review

For citations:


Tarasova Yu.I., Budyak A.E. Formation stages of the Kholodninskoye pyrite-polymetallic deposit ore zone. Earth sciences and subsoil use. 2023;46(2):201-211. (In Russ.) https://doi.org/10.21285/2686-9993-2023-46-2-201-211. EDN: RANYSC

Views: 370


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2686-9993 (Print)
ISSN 2686-7931 (Online)