Preview

Earth sciences and subsoil use

Advanced search

Magnetoelastic effect of kimberlite host rocks (Yakutsk diamondiferous province)

https://doi.org/10.21285/2686-9993-2023-46-4-344-363

EDN: GNUPHH

Abstract

The purpose of the research is to conduct petro- and paleomagnetic studies of Early Paleozoic rocks of the carbonate basement of a number of diamond deposits in the Yakutsk diamondiferous province in order to study the changes in petrophysical parameter values in the dynamic influence zone of a kimberlite pipe. It is shown that the formation of kimberlite diatremes accompanied by pulsating explosions shifting upwards brings about thermoelastic stress fields in the kimberlite-bearing medium, which are characterized by epigenetic changes and associated petrophysical heterogeneities (petrophysical anomalies). Petromagnetic heterogeneities of burning and stress are, therefore, some of these petrophysical anomalies, within which kimberlite-bearing rocks have contrastingly changed their original magnetic characteristics under the action of thermodynamic processes. Primarily, petromagnetic anomalies are reflected in the changed nature of the anisotropy of magnetic susceptibility: from sedimentary to dyke geotype. In addition, petromagnetic anomalies of magnetic susceptibility can be accompanied by the formation of metachronous natural residual magnetization vectors in kimberlite host rocks. The dimensions of petromagnetic anomalies (petromagnetic heterogeneities) may significantly exceed the size of the kimberlite pipe itself, which facilitates identification and delineation of the most promising areas. Besides, the magnetoelastic effect can create zones close to the kimberlite bodies that are hardly permeable for relatively viscous, protocrystal-rich mafic magmas. This is the reason for their wedging out along petrophysical barriers that is presented by splitting into thin tongues, formation of trap-free windows and corridors, toroidal shafts with sharply increasing thickness in intrusions, etc. Having relatively elevated values of magnetic and density parameters, such forms of igneous formations will be reflected in the observed geophysical fields. Thus, it is reasonable to consider petromagnetic anomalies as an important petrophysical search criterion for the detection of bedrock kimberlite bodies.

About the Authors

K. M. Konstantinov
Irkutsk National Research Technical University; Institute of the Earth Crust SB RAS
Russian Federation

Konstantin M. Konstantinov, Dr. Sci. (Geol. & Mineral.), Head of the Geophysics Department, Siberian School of Geosciences; Senior Researcher of the Mining Geology Laboratory

Irkutsk


Competing Interests:

The authors declare no conflicts of interests.



M. D. Tomshin
Diamond and Precious Metal Geology Institute SB RAS
Russian Federation

Mikhail D. Tomshin, Cand. Sci. (Geol. & Mineral.), Senior Researcher, Head of the Geological Museum Laboratory

Yakutsk


Competing Interests:

The authors declare no conflicts of interests.



M. S. Khoroshikh
Institute of the Earth Crust SB RAS
Russian Federation

Maksim S. Khoroshikh, Postgraduate Student

Irkutsk


Competing Interests:

The authors declare no conflicts of interests.



References

1. Ivanov D.V., Tolstov A.V., Ivanov V.V. Geochemical prospecting of diamond deposits within the Alakit-Markha kimberlite field bounds. Voprosy estestvoznaniya. 2018;2:44-48. (In Russ.). EDN: XZLDML.

2. Ignatov P.A., Novikov K.V., Shmonov A.M., Razumov A.N., Kilizhekov O.K. Comparative analysis of ore-bearing structures in Maiskoe, Markha, and Ozernoe kimberlite bodies at the Nakyn field, Yakutia. Geologiya rudnykh mestorozhdenii. 2015;57(2):125-131. (In Russ.). https://doi.org/10.21285/10.7868/S0016777015020033. EDN: TPWJWR.

3. Ignatov P.A. Detection methods of hidden ore-controlling structures in sedimentary strata on the examples of uranium and diamond deposits. In: Fundamental’nye problemy geologii mestorozhdenii poleznykh iskopaemykh i metallogenii: materialy XXI Mezhdunar. nauch. konf., posvyashch. 100-letiyu akad. V.I. Smirnova = Fundamental problems of geology of mineral deposits and metallogeny: proceedings of the 21 st International scientific conference, dedicated to the 100 th anniversary of Academician V.I. Smirnov. Moscow: MAKS Press; 2010, vol. 1, p. 169-186. (In Russ.).

4. Kostrovitskii S.I. Physical conditions, hydraulics and kinematics of kimberlite pipes filling. Novosibirsk: Nauka; 1976, 96 p. (In Russ.).

5. Milashev V.A. Explosion tubes. Leningrad: Nedra; 1984, 268 p. (In Russ.).

6. Nekrasov I.Ya., Gorbachev N.S. Possible kimberlite formation mechanism. Doklady Akademii nauk SSSR. 1978;240(1):181-184. (In Russ.).

7. Nikishov K.N. Petrological and mineralogical model of the kimberlite process. Moscow: Nauka; 1984, 213 p. (In Russ.).

8. Konstantinov K.M., Mishenin S.G., Tomshin M.D., Kornilova V.P., Kovalchuk O.E. Petromagnetic heterogeneities of the Permo-Triassic traps of the Daldyn-Alakit diamond province (Western Yakutia). Litosfera = Lithosphere (Russia). 2014;2:77-98. (In Russ.). EDN: SGPOVZ.

9. Konstantinov K.M., Kirguev A.A., Khoroshikh M.S. Petromagnetic heterogeneities of stress: applied corollary of Villari effect. Prirodnye resursy Arktiki i Subarktiki = Arctic and Subarctic Natural Resources. 2018;24(2):29-38. (In Russ.). https://doi.org/10.31242/2618-9712-2018-24-2-29-38. EDN: UZSKPQ.

10. Konstantinov I.K., Konstantinov K.M., Khoroshikh M.S., Kirguev A.A., Orlova G.V. Anisotropy of the magnetic susceptibility petromagnetic heterogeneities of firing and stress zones of sedimentary and igneous rocks. Geofizika = Geophysics. 2023;4:41-49. (In Russ.). https://doi.org/10.34926/geo.2023.75.92.007. EDN: LCABXV.

11. Vakhromeev G.S., Davydenko A.Yu. Modeling in exploration geophysics. Moscow: Nedra; 1987, 193 p. (In Russ.).

12. Zinchouk N.N., Bondarenko A.T., Garat M.N. Petrophysics of kimberlites and their host rocks. Moscow: Nedra-Biznestsentr; 2002, 695 p. (In Russ.).

13. Khramov A.N., Goncharov G.I., Komissarova R.A., Pisarevskii S.A., Pogarskaya I.A., Rzhevskii Yu.S., et al. Paleomagnetology. Leningrad: Nedra; 1982, 312 p. (In Russ.).

14. Sholpo L.E. Using rock magnetism for solving geologic problems. Leningrad: Nedra; 1977, 183 p. (In Russ.).

15. Jelínek V. Measuring anisotropy of magnetic susceptibility on a slowly spinning specimen – basic theory. Agico Print no. 10. Brno; 1997, p. 1-27.

16. Tarling D.H., Hrouda F. The magnetic anisotropy of rocks. London: Chapman & Hall; 1993, 217 p.

17. Zijderveld J.D.A. A.C. demagnetization of rocks: analysis of results. In: Collinson D.W., Creer K.M., Runcorn S.K. (eds). Methods in paleomagnetism. Amsterdam: Elsiver; 1967, vol. 3, p. 254-286.

18. Konstantinov K.M., Yakovlev А.A., Antonova Т.А., Konstantinov I.К., Ibragimov Sh.Z., Artemova E.V. Petro- and paleomagnetic characteristics of the structural-material complexes of the diamond mining of the Nyurbinskaya pipe (Middle Markha district, West Yakutia). Geodinamika i tektonofizika = Geodynamics & Tectonophysics. 2017;8(1):135-169. (In Russ.). https://doi.org/10.5800/GT-2017-8-1-0235. EDN: YPOZID.

19. Konstantinov K.M., Artemova E.V., Konstantinov I.K., Yakovlev A.A., Kirguev A.A. Possibilities of the method of anisotropy of magnetic susceptibility in the solution of geologic-geophysical problems of search radical diamond fields. Geofizika = Geophysics. 2018;1:67-77. (In Russ.). EDN: YWMSHU.

20. Zinchuk N.N. Geological structure and petrography of kimberlite pipes. Nauka i obrazovanie. 2016;4:7-15. (In Russ.). EDN: XYFZCP.

21. Kryuchkov L.I., Nikulin V.I., Krasinets S.S., Lelyukh M.I., Lyubimenko V.F., Somov S.V., et al. Localization conditions and structure features of the kimberlite body in the Aikhal area. Geologiya i geofizika. 1991;5:61-69. (In Russ.).

22. Tomshin M.D., Gogoleva S.S. Morphology of trap sills near kimberlites. Litosfera = Lithosphere (Russia). 2023;23(4):579-588. (In Russ.). https://doi.org/10.24930/1681-9004-2023-23-4-579-588. EDN: VZFUFH.

23. Tomshin M.D., Lelyukh M.I., Mishenin S.G., Suntsova S.P., Kopylova A.G., Ubinin S.G. Development scheme of trap magmatism of the eastern side of the Tunguska syneclise. Otechestvennaya Geologiya = National Geology. 2001;5:19-24. (In Russ.).

24. Kirguev A.A., Konstantinov K.M., Vasilyeva A.E. Basite petromagnetic legend of the Tungus syneclise eastern board. Prirodnye resursy Arktiki i Subarktiki = Arctic and Subarctic Natural Resources. 2019;24(1):18-32. (In Russ.). https://doi.org/10.31242/2618-9712-2019-24-1-18-32. EDN: XPEQYO.

25. Kirguev A.A., Konstantinov K.M., Kuzina D.M., Makarov A.A., Vasilyeva A.E. Petromagnetic classification of mafic rocks on the eastern side of the Tunguska syneclise. Geofizika = Geophysics. 2020;3:45-61. (In Russ.). EDN: FQKOIB.

26. Konstantinov K.M., Gladkov A.S. Dynamic physical-geological model of the field of diamonds from the Komsomolskaya kimberlite pipe (Alakit-Markha field of Western Yakutia). Geodinamika i tektonofizika = Geodynamics & Tectonophysics. 2022;13(5):0678. (In Russ.). https://doi.org/10.5800/GT-2022-13-5-0678. EDN: IDAGIA.

27. Konsnantinov K.M., Novopashin A.V., Evstratov A.A., Konstantinov I.K. Modeling of gravimagnetic fields of primary diamond deposits in areas of Perman-Triassic traps. Geofizika = Geophysics. 2012;6:64-72. (In Russ.). EDN: RZDIMT.

28. Parshin A.V., Bydyak A.E., Blinov A.V., Kosterev A.N., Morozov V.A., Mikhalev A.O., et al. Low-altitude unmanned aeromagnetic survey in management of large-scale structural-geological mapping and prospecting for ore deposits in composite topography. Part 2. Geografiya i prirodnye resursy. 2016;S6:150-155. (In Russ.). https://doi.org/10.21782/GIPR0206-1619-2016-6(150-155). EDN: XQRZBR.

29. Parshin A.V., Morozov V.A., Blinov A.V., Kosterev A.N., Budyak A.E. Low-altitude geophysical magnetic prospecting based on multirotor UAV as a promising replacement for traditional ground survey. Geo-Spatial Information Science. 2018;21(1):67-74. https://doi.org/10.1080/10095020.2017.1420508. EDN: XXHXRZ.


Review

For citations:


Konstantinov K.M., Tomshin M.D., Khoroshikh M.S. Magnetoelastic effect of kimberlite host rocks (Yakutsk diamondiferous province). Earth sciences and subsoil use. 2023;46(4):344-363. (In Russ.) https://doi.org/10.21285/2686-9993-2023-46-4-344-363. EDN: GNUPHH

Views: 337


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2686-9993 (Print)
ISSN 2686-7931 (Online)