Development prospects of natural electromagnetic radiation recording technology to predict geodynamic phenomena in Norilsk mines
https://doi.org/10.21285/2686-9993-2024-47-1-56-65
EDN: MXFKTH
Abstract
The purpose of this study is to analyze the current level of knowledge on the issue of hazardous manifestations of rock pressure in natural electromagnetic fields as well as to assess the possibility of using this phenomenon for forecasting dangerous geodynamic phenomena in the open-pits of the Norilsk ore region.
Modern mining technologies allow to extract minerals from fairly large depths, for example, in Norilsk region mining can be carried out at levels of about 1.5–2 km deep, which significantly exceeds the critical depth of dangerous deformation process manifestations.
The object of the conducted research is the rock massifs of the Talnakh ore cluster in the Norilsk region prone to the manifestation of dangerous geodynamic phenomena.
The deposits of the Norilsk ore region are liable to or dangerous for rock bumps. As the mining depth increases the hazardous geodynamic phenomena intensify, which justifies the need for hazardous phenomena prediction to ensure safe mining operations. The development of geophysical technologies (the electrical prospecting technologies in natural electromagnetic fields to predict seismic events in particular) is an urgent task that will improve the safety of mining operations. Based on the analysis of world experience we can conclude that the use of natural electromagnetic radiation recording to predict changes in the state of a rock massif is promising. Due to the fact that a large number of factors including lithological composition, texture and structure features influence the parameters of natural electromagnetic radiation the forecast technology for a specific mine should be based on the deviation of natural electromagnetic radiation parameters from background values that depend on the mining and geological conditions of the open-pit under investigation.
About the Authors
S. M. DanilievRussian Federation
Sergey M. Daniliev, Cand. Sci. (Geol. & Mineral.), Associated Professor, Associated Professor of the Department
Geophysics Department
St. Petersburg
O. M. Shnyukova
Russian Federation
Olga M. Shnyukova, Postgraduate Student
St. Petersburg
References
1. Nagovitsin Yu.N., Kakoshina L.V. Regional forecast of rock-bump hazard at the PJSC Mining Metallurgical Company Norilsk Nickel mines. Development prospects. In: Gornoe delo v XXI veke: tekhnologii, nauka, obrazovanie : materialy Mezhdunar. nauch.-prakt. konf. = Mining in the 21<sup>st</sup> century: technology, science, education: materials of the International scientific and practical conference : scientific conference materials. 28–29 October 2015, Saint Petersburg. Saint Petersburg; 2015, p. 32-33. (In Russ.).
2. Shabarov A.N., Zvezdkin V.A., Anokhin A.G. Studies of the stress-strain state of intrusion in the process of joint mining of ore deposits of the Oktyabrskiy and Talnakhskiy deposits. Zapiski Gornogo instituta = Journal of Mining Institute. 2012;198:161-165. (In Russ.). EDN: QZERST.
3. Zvezdkin V.A., Andreev A.A. Geomechanical foundations of the safe extraction in joint mining of rich, coppery and ore patches in deep ore mines at Talnakh. Zapiski Gornogo instituta = Journal of Mining Institute. 2010;188:47-49. (In Russ.). EDN: RENUAP.
4. Malovichko D.A. Assessment of seismic hazard in mines. Rossiiskii seismologicheskii zhurnal = Russian Journal of Seismology. 2020;2(2):21-38. (In Russ.) doi: 10.35540/2686-7907.2020.2.02. EDN: EGQZBI.
5. Tsirel S.V. Regularities of progressing of technogenic seismic activity in mining areas. Zapiski Gornogo instituta = Journal of Mining Institute. 2010;188:58-62. (In Russ.). EDN: RENUBT.
6. Kozyrev A.A., Savchenko S.N., Panin V.I., Semenova I.Eh., Rybin V.V., Fedotova Yu.V., et al. Geomechanical processes in the geological environment of mining engineering systems and geodynamic risk management. Apatity: Kola Science Centre RAS; 2019, 431 p. (In Russ.). doi: 10.37614/978.5.91137.391.7. EDN: ZKZKWA.
7. Nagovitsin Yu.N., Kakoshina L.V., Rodionova E.V., Mulev S.N. Continuous seismic monitoring at rockburst-hazardous deposits in the Norilsk area. Gornyi Zhurnal. 2015;6:36-40. (In Russ.). doi: 10.17580/gzh.2015.06.07. EDN: UGZLHZ.
8. Vostrikov V.I., Oparin V.N., Usoltseva O.M., Mulev S.N. The assessment of the geodynamic state of rock massifs in deep mines of the Norilsk-Talnakh polymetallic deposit. Fundamental’nye i prikladnye voprosy gornykh nauk. 2019;6(2):28-34. (In Russ.). doi: 10.15372/FPVGN2019060205. EDN: ZOGVRO.
9. Rasskazov I.Yu., Tereshkin A.A., Gladyr A.V., Tsirel S.V., Rozanov A.O. Application of acoustic measurement data to characterize initiation and development of disintegration focus in a rock mass. Fiziko-tekhnicheskie problemy razrabotki poleznykh iskopaemykh. 2017;2:29-37. (In Russ.). EDN: YPBWBB.
10. Wei M., Song D., He X., Li Z., Qiu L., Lou Q. Effect of rock properties on electromagnetic radiation characteristics generated by rock fracture during uniaxial compression. Rock Mechanics and Rock Engineering. 2020;53:5223-5238. doi: 10.1007/s00603-020-02216-x.
11. Lin P., Wei P., Wang C., Kang S., Wang X. Effect of rock mechanical properties on electromagnetic radiation mechanism of rock fracturing. Journal of Rock Mechanics and Geotechnical Engineering. 2021;13(4):798-810. doi: 10.1016/j.jrmge.2021.01.001.
12. Li Z., Lei Y., Wang E., Frid V., Li D., Liu, X., et al. Characteristics of electromagnetic radiation and the acoustic emission response of multi-scale rock-like material failure and their application. Foundations. 2022;2:763-780. doi: 10.3390/foundations2030052.
13. Makhmudov Kh.F., Kuksenko V.S. Electromagnetic phenomena entailed by deformation and fracture of dielectric solids. Fizika tverdogo tela. 2005;47(5):856-859. (In Russ.). EDN: RDABMV.
14. Han J., Huang S., Zhao W., Wang S., Deng Y. Study on electromagnetic radiation in crack propagation produced by fracture of rocks. Measurement. 2019;131:125-131. doi: 10.1016/j.measurement.2018.06.067.
15. Perelman M.E., Khatiashvili N.G. On radio emission during brittle destruction of dielectrics. Doklady Akademii nauk SSSR. 1981;256(4):824-826. (In Russ.).
16. Gokhberg M.B., Gufeld I.L., Dobrovolskiy I.P. Sources of electromagnetic precursors of earthquakes. Doklady Akademii nauk SSSR. 1980;250(2):323-326. (In Russ.).
17. Gokhberg M.B., Morgunov V.A., Aronov E.L. On high-frequency electromagnetic radiation during the seismic activity. Doklady Akademii nauk SSSR. 1979;248(5):1077-1081. (In Russ.).
18. Vorob’ev L.A. On the possibility of electrical discharges in the Earth’s interior. Geologiya i geofizika. 1970;11(12): 3-13. (In Russ.).
19. Gordeev V.F., Malyshkov Yu.P., Malyshkov S.Yu., Polivah V.I., Shtalin S.G. Electromagnetic monitoring of a technical condition of concrete frame, highway stream crossing and the other artificial constructions. Gornyi informatsionno-analiticheskii byulleten’ = Mining informational and analytical bulletin. 2009;S17:225-229. EDN: KIFEYI.
20. Gordeev V.F., Malyshkov Yu.P., Chakhlov V.L., Fursa T.V., Biller V.K., Eliseev V.P. Electromagnetic emission of dielectric materials under static and dynamic loading. Zhurnal tekhnicheskoi fiziki. 1994;64(4):57-67. (In Russ.).
21. Bespalko A.A., Yavorovich L.V., Klimko T.A. A study of electromagnetic emission of rock contacts in mine massif. Fizicheskaya mezomekhanika. 2004;7(2):285-287. (In Russ.). doi: 10.24411/1683-805X-2004-00027.
22. Khatiashvili N.G., Perelman M.E. Generation of the electromagnetic radiation during acoustic wave transmission through crystalline dielectrics and some rocks. Doklady Akademii nauk SSSR. 1982;263(4):839-842. (In Russ.).
23. Vostretsov A.G., Krivetsky A.V., Bizyaev A.A., Yakovitskaya G.E. Electromagnetic radiation characteristics of rocks in their destruction in laboratory experiments. Doklady Akademii nauk vysshey shkoly Rossiyskoy Federatsii = Proceedings of the Russian Higher School Academy of Sciences. 2013;2:46-54. (In Russ.). EDN: RFABFV.
24. Bespal’ko A.A., Yavorovich L.V., Fedotov P.I. Relationship between electromagnetic signal parameters and rock electrical characteristics under acoustic and quasi-static influences. Izvestiya Tomskogo politekhnicheskogo universiteta. Inzhiniring georesursov = Bulletin of the Tomsk Polytechnic University. Geo Assets Engineering. 2005;308(7):18-23. (In Russ.). EDN: HROTMF.
25. Mulev S.N., Starnikov V.N., Romanevich O.A. The current development stage of the geophysical method of natural electromagnetic radiation recording. (EMI). Ugol’ = Russian Coal Journal. 2019;10:6-14. (In Russ.). doi: 10.18796/0041-5790-2019-10-6-14. EDN: EJOFQL.
26. Daniliev S., Danilieva N., Mulev S., Frid V. Integration of seismic refraction and fracture-induced electromagnetic radiation methods to assess the stability of the roof in mine-workings. Minerals. 2022;12(5):609. doi: 10.3390/min12050609. EDN: DUOUDO.
27. Prostov S.M., Razumov E.E., Mulev S.N., Shabanov E.A. Calculation and hardware base for geomonitoring the state of the array by registering natural electromagnetic radiation. Izvestiya Tomskogo politekhnicheskogo universiteta. Inzhiniring georesursov = Bulletin of the Tomsk Polytechnic University. Geo Assets Engineering. 2022;333(11):183-193. (In Russ.). doi: 10.18799/24131830/2022/11/3840. EDN: FKWVBW.
28. Egorov A.P., Ryzhov V.A. To the issue of systematization of geophysical studies of the geomechanical state of rock mass and the Earth’s surface for operational monitoring of the safety of mining in coal mines. Ugol’ = Russian Coal Journal. 2019;10:29-33. (In Russ.). doi: 10.18796/0041-5790-2019-10-29-33. EDN: ZCRGQY.
Review
For citations:
Daniliev S.M., Shnyukova O.M. Development prospects of natural electromagnetic radiation recording technology to predict geodynamic phenomena in Norilsk mines. Earth sciences and subsoil use. 2024;47(1):56-65. (In Russ.) https://doi.org/10.21285/2686-9993-2024-47-1-56-65. EDN: MXFKTH