Preview

Earth sciences and subsoil use

Advanced search

Rare metal concentration features at a caldera type deposit in the Miocene-Quaternary boron-lithium province of North America. Search for analogues

https://doi.org/10.21285/2686-9993-2024-47-1-90-99

EDN: CCJLMJ

Abstract

   The fact that lithium has a wide range of applications in many fields including the production of lithium-ion batteries determines an increased interest in lithium mining. The most common types of lithium raw material sources are underground brines, saline lakes (“salars”), and ore minerals. In 2021, the first and unique deposit of lithium clays was discovered in the McDermitt caldera (Nevada, USA). Its resources are estimated at 13.7 million tons of lithium carbonate with the lithium concentration of 2231 mg/l. The uniqueness of this deposit raises the interest in the formation of model ideas about lithium
clay genesis to search for analogous deposits and explore them.

   The purpose of the article is to provide an overview of the geological structure and describe the main development periods of the McDermitt caldera.

   The authors also characterize the potential sources of lithium (felsic igneous rocks and hydrothermal fluids), migration paths of lithium-bearing brines as well as the formation mechanism of clays with a high lithium content (hectorite, illite and smectite). A generalized formation model of this type of deposits is proposed. Particular attention is paid to the role of hydrothermal fluids as a potential additional source of lithium “supply” to the caldera basin. Key criteria characteristic of industrial accumulations of lithium of this type have been formed in order to explore and identify analogous deposits. In conclusion, the authors put forward a hypothesis about the presence of deposits that are analogous to the Thacker Pass in the McDermitt caldera in the lithium province on the Altiplano-Puna plateau in one of the calderas of the Altiplano-Puna volcanic complex, and in Eastern Kamchatka.

About the Authors

D. A. Pogrebnaia
Institute of the Earth Crust SB RAS; LLC Energy Craft
Russian Federation

Daria A. Pogrebnaia, Postgraduate Student, Project Manager

Irkutsk, Moscow



A. G. Vakhromeev
Institute of the Earth Crust SB RAS; Irkutsk National Research Technical University
Russian Federation

Andrey G. Vakhromeev, Dr. Sci. (Geol. & Mineral.), Professor,
Head of the Laboratory, Professor

Oil and Gas Laboratory; Institute of Subsoil Use; Department of Oil and Gas Engineering

Irkutsk



References

1. Boyarko G.Yu., Khatkov V.Yu., Tkacheva E.V. Lithium raw potential in Russia. Izvestiya Tomskogo politekhnicheskogo universiteta. Inzhiniring georesursov = Bulletin of the Tomsk Polytechnic University. Geo Assets Engineering. 2022;333(12):7-16. (In Russ.). doi: 10.18799/24131830/2022/12/3975. EDN: HORMRU.

2. Kesler S.E., Gruber P.W., Medina P.A., Keoleian G.A., Everson M.P., Wallington T.J. Global lithium resources: relative importance of pegmatite, brine and other deposits. Ore Geology Reviews. 2012:48;55-69. doi: 10.1016/J.OREGEOREV.2012.05.006.

3. Romanyuk T.V., Tkachev A.V. Geodynamic formation scenario of the world’s largest Neogene-Quaternary boron-lithium provinces. Moscow: Svetoch Plyus; 2010, 304 p. (In Russ.).

4. Vakhromeev A.G., Litvinova I.V., Misyurkeeva N.V., Alekseev S.V., Pogrebnaya D.A. On lithium minerageny of the Siberian Platform hydromineral province. In: Geodinamicheskaya evolyutsiya litosfery Tsentral’no-Aziatskogo podvizhnogo poyasa (ot okeana k kontinentu) : materialy nauch. konf. = Geodynamic evolution of the Central Asian mobile belt lithosphere (from ocean to continent): proceedings of the scientific conference. 18–21 October 2022, Irkutsk. Irkutsk; 2022, vol. 20, p. 43-45. (In Russ.). EDN: OECOKO.

5. Vakhromeev A.G., Zelinskaya E.V., Litvinova I.V., Pogrebnaya D.A. Model of lithium-bearing brine secondary concentration in the boiling fluid systems of magmatic-sedimentary basins of the Siberian platform hydromineral province. In: Geotermal’naya vulkanologiya, gidrogeologiya, geologiya nefti i gaza (Geothermal Volcanology Workshop 2023) : materialy Vseros. nauch. konf. s mezhdunar. uchastiem = Geothermal Volcanology, Hydrogeology, Oil & Gas Geology (Geothermal Volcanology Workshop 2023) : proceedings of the All-Russian scientific conference with the international participation. 4–9 September 2023, Petropavlovsk-Kamchatsky. Petropavlovsk-Kamchatsky; 2023, p. 11-12. (In Russ.).

6. Tabelin C.B., Dallas J.A., Casanova S., Pelech T., Bournival G., Saydam S., et al. Towards a low-carbon society : a review of lithium resource availability, challenges and innovations in mining, extraction and recycling, and future perspectives. Minerals Engineering. 2021;163:106743. doi: 10.1016/j.mineng.2020.106743.

7. Castor S.B., Henry C.D. Lithium-rich claystone in the McDermitt Caldera, Nevada, USA: geologic, mineralogical, and geochemical characteristics and possible origin. Minerals. 2020;10(1):68. doi: 10.3390/min10010068.

8. DiPietro J.A. Geology and landscape evolution. General principles applied to the United States. Elsevier; 2018, 580 p.

9. Henry C.D., Castor S.B., Starkel W., Ellis B.S., Wolff J.A., Laravie J.A., et al. Geology and evolution of the McDermitt caldera, northern Nevada and southeastern Oregon, western USA. Geosphere. 2017;13(4). doi: 10.1130/GES01454.1.

10. Benson T.R., Matthew A.C., Dilles J.H. Hydrothermal enrichment of lithium in intracaldera illite-bearing claystones. Science Advances. 2023;9(35):1-10. doi: 10.1126/sciadv.adh8183.

11. Benson T.R., Coble M.A., Rytuba J.J., Mahood G.A. Lithium enrichment in intracontinental rhyolite magmas leads to Li deposits in caldera basins. Nature Communications. 2017;8:270. doi: 10.1038/s41467-017-00234-y.

12. Ingraffia J.T., Ressel M.W., Benson T.R. Thacker Pass lithium clay deposit, McDermitt caldera, north-central Nevada: devitrification of McDermitt tuff as the main lithium source. Geological Society of Nevada Special Publication. 2020;395-410.

13. Gallup D.L. Geochemistry of geothermal fluids and well scales, and potential for mineral recovery. Ore Geology Reviews. 1998;12(4):225-236. doi: 10.1016/S0169-1368(98)00004-3.

14. Topchieva O.M., Petrovsky V.A., Sukharev A.E. The conditions for the formation of mineral inclusions in hydrothermal metasomatites of the Dvugorbaya mountain, Southern Kamchatka. Vestnik Permskogo universiteta. Geologiya = Bulletin of Perm University. Geology. 2018;17(1):1-10. (In Russ.). doi: 10.17072/psu.geol.17.1.1. EDN: LAUVYD.

15. Kiryukhin A.V. Magmatic fracking and hydrothermal systems beneath active volcanoes. In: Geotermal’naya vulkanologiya, gidrogeologiya, geologiya nefti i gaza (Geothermal Volcanology Workshop 2020) : materialy Vseros. nauch. konf. s mezhdunar. Uchastiem = Geothermal Volcanology, Hydrogeology, Oil&Gas Geology (Geothermal Volcanology Workshop 2020) : materials of the All-Russian scientific conference with international participation. 3–8 September 2020, Petropavlovsk-Kamchatsky. Petropavlovsk-Kamchatsky; 2020, p. 27-31. (In Russ.). EDN: MWRRKH.

16. Ledneva V.P., Lurie M.L. Some features of Triassic magmatism of the Tunguska syneclise. In: Dzotsenidze G.S., Sokolov I.V., Khvorova I.V. (eds). Problemy vulkanogenno-osadochnogo litogeneza = Problems of volcanogenic-sedimentary lithogenesis. Moscow: Nauka; 1974, p. 47-51. (In Russ.).

17. Rychagov S.N. Giant gas-rich hydrothermal systems and their role in the generation of vapor-dominated geothermal fields and ore mineralization. Vulkanologiya i seismologiya = Volcanology and seismology. 2014;2:3-8. (In Russ.). doi: 10.7868/S0203030614020060. EDN: SAIXYV.


Review

For citations:


Pogrebnaia D.A., Vakhromeev A.G. Rare metal concentration features at a caldera type deposit in the Miocene-Quaternary boron-lithium province of North America. Search for analogues. Earth sciences and subsoil use. 2024;47(1):90-99. (In Russ.) https://doi.org/10.21285/2686-9993-2024-47-1-90-99. EDN: CCJLMJ

Views: 431


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2686-9993 (Print)
ISSN 2686-7931 (Online)