Petromagnetism and paleomagnetism of kimberlite pipesof the Verkhnemunskoe deposit (Yakutsk diamondiferous province)
https://doi.org/10.21285/2686-9993-2024-47-1-100-128
EDN: AVKQNU
Abstract
The purpose of the studies of kimberlite pipes of the Verkhnemunskoe diamond field is to calculate the Middle Paleozoic paleomagnetic pole to clarify the trajectory of the apparent migration of the pole and reconstructions of the paleogeographic position of the Siberian platform at the time of the manifestation of active tectono-magmatic processes.
The Verkhnemunskoye deposit is located within the Verkhnemunskoye kimberlite field of the Yakutsk diamondiferous province and includes five kimberlite pipes (Deimos, Zapolyarnaya, Komsomolskaya-Magnitnaya, Novinka and Poiskovaya), the age of which according to geological and isotopic data is estimated as Late Devonian-Early Carboniferous (372–347 Ma). For the first time scalar and vector physical parameters of kimberlites and captured xenoliths from different structural-material complexes of the Earth’s crust, as well as the host terrigenous sedimentary rocks of the Early Paleozoic were obtained, which are necessary for the development of physical-geological models of the Verkhnemunskoe field deposits. A relatively deep level of erosional shearing of the field has been established. The primary (synchronous with the formation of the field) natural residual magnetization was preserved in the kimberlite cohesive mass. The main carrier minerals of natural remanent magnetization vectors of kimberlites are unaltered magnesioferrite and magnetite, which indicates their thermo-sufficient nature. The natural remanent magnetization vectors of captured xenoliths indicate that the influence of hypergenic processes did not strongly affect the NRM vectors of kimberlites. Firing test is positive. The paleomagnetic pole with coordinates Φ = 26.5°N, Λ = 142.2°E, dp/dm = 6.2/7.8° was calculated from the obtained clusters of N = 10 vectors of the primary natural remanent magnetization of kimberlite pipes. On its basis, we reconstructed the paleogeographic position of the Siberian Platform, which at the time of the kimberlite intrusion was located in the middle latitudes of the northern hemisphere and was facing north with its southern edge.
About the Authors
M. S. KhoroshikhRussian Federation
Maksim S. Khoroshikh, Senior Mining Engineer
Bodaibo
K. M. Konstantinov
Russian Federation
Konstantin M. Konstantinov, Dr. Sci. (Geol. & Mineral.),
Head of the Department
Siberian School of Geosciences; Geophysics Department
Irkutsk
I. S. Sharygin
Russian Federation
Igor S. Sharygin, Cand. Sci. (Geol. & Mineral.), Head of the Laboratory
Laboratory of Petrology, Geochemistry and Ore Genesis
Irkutsk
D. M. Kuzina
Russian Federation
Dilyara M. Kuzina, Cand. Sci. (Geol. & Mineral.), Senior Researcher
Institute of Geology and Oil and Gas Technologies
Kazan
S. V. Potapov
Russian Federation
Sergei V. Potapov, Junior Researcher of the Laboratory
Laboratory of Petrology, Geochemistry and Ore Genesis
Irkutsk
D. Yu. Kokodey
Russian Federation
Diana Yu. Kokodey, Student
Siberian School of Geosciences
Irkutsk
References
1. Khramov A.N., Goncharov G.I., Komissarova R.A., Pisarevskii S.A., Pogarskaya I.A., Rzhevskii Yu.S., et al. Paleomagnetology. Leningrad: Nedra; 1982, 312 p. (In Russ.).
2. Vakhromeev G.S., Davydenko A.Yu. Modeling in exploration geophysics. Moscow: Nedra; 1987, 194 p. (In Russ.).
3. Khramov A.N. Standard series of paleomagnetic poles for the plates of northern Eurasia in relation to the problems of paleogeodynamics of the USSR territory. In: Paleomagnetism and Paleogeodynamics of the USSR Territory. Leningrad: All-Russian Petroleum Research Geological Prospecting Institute; 1991, 125 p. (In Russ.).
4. Pecherskii D.M., Didenko A.N. Paleoasian ocean: petromagnetic and paleomagnetic information on its lithosphere. Moscow: Sсhmidt Institute of Physics of the Earth of the Russian Academy of Sciences; 1995, 298 p. (In Russ.).
5. Torsvik T.H., Van der Voo R., Preeden U., Niocaill C.M., Steinberger B., Doubrovine P.V., et al. Phanerozoic polar wander, palaeogeography and dynamics. Earth-Science Reviews. 2012;114(3-4):325-368. doi: 10.1016/j.earscirev.2012.06.007.
6. Kuzmin M.I., Yarmolyuk V.V., Kravchinsky V.A. Phanerozoic hot spot traces and paleogeographic reconstructions of the Siberian continent based on interaction with the African large low shear velocity province. Earth-Science Reviews. 2010;102(1-2):29-59. doi: 10.1016/j.earscirev.2010.06.004.
7. Zaitsev A.I., Smelov A.P. Isotope geochronology of rocks of the kimberlite formation of the Yakutsk province. Yakutsk: Ofset; 2010, 108 p. (In Russ.). EDN: QKJWHP.
8. Brakhfogel’ F.F. Geological aspects of kimberlite magmatism of the north-east of the Siberian platform. Yakutsk: Yakut branch of the USSR Academy of Sciences; 1984, 128 p. (In Russ.).
9. Krivonos V.F. Relative and absolute age of kimberlites. Otechestvennaya Geologiya = National Geology. 1997;1:41-51. (In Russ.).
10. Sun J., Liu C-Z., Tappe S., Kostrovitsky S.I., Wu F-Y., Yakovlev D., et al. Repeated kimberlite magmatism beneath Yakutia and its relationship to Siberian flood volcanism: insights from in situ U, Pb and Sr, Nd perovskite isotope analysis. Earth and Planetary Science Letters. 2014;404:283-295. doi: 10.1016/j.epsl.2014.07.039.
11. Kostrovitsky S.I., Yakovlev D.A. Kimberlites of the Yakut kimberlite province: composition and genesis. Novosibirsk: Siberian Branch of the Russian Academy of Sciences; 2022, 468 p. (In Russ.). doi: 10.53954/9785604788837. EDN: CUVAHB.
12. Khar’kiv A.D., Zinchuk N.N., Kryuchkov A.I. Diamond primary deposits of the word. Moscow: Nedra; 1998, 555 p. (In Russ.). EDN: IIYYNK.
13. Van der Voo R. The reliability of paleomagnetic data. Tectonophysics. 1990;184(1):1-9. doi: 10.1016/0040-1951(90)90116-P.
14. Vladimirov B.M., Dauev Yu.M., Zubarev B.M., Kaminskii F.V., Minorin V.E., Prokopchuk B.I. Diamond deposits of the USSR, prospecting and exploration methods. Part 1. Geology of diamond deposits in the USSR. Moscow: Central Research Institute of Geological Prospecting for Base and Precious Metals; 1984, 435 p. (In Russ.).
15. Zankovich N.S., Rudakova G.N. New data on kimberlite petrography in the Upper Muna field pipes (Yakutia). In: Zinchuk N.N. (ed.). Geologiya almazov – nastoyashchee i budushchee (geologi k 50-letnemu yubileyu g. Mirnogo i almazodobyvayushchei promyshlennosti Rossii) = Geology of diamonds – present and future (Geologists to the 50<sup>th</sup> anniversary of the city of Mirny and Russian diamond mining industry). Voronezh: Voronezh State University; 2005, p. 790-806. (In Russ.).
16. Spetsius Z.V., Taylor L.A. Kimberlite xenoliths as evidence for subducted oceanic crust in the formation of the Siberian craton. In: Plumes and problem of deep sources of alkaline magmatism : proceedings of the 3<sup>d</sup> International workshop. Irkutsk: Irkutsk State Technical University; 2003, p. 5-19.
17. Lepekhina E., Rotman A., Antonov A., Sergeev S. SIMS SHRIMP U-Pb dating of perovskite from kimberlites of the Siberian platform (Verhnemunskoe and Alakite- 161 Marhinskoe fields). International Kimberlite Conference : proceedings of the 9<sup>th</sup> International conference. Frankfurt: Elsevier; 2008, vol. 9. doi: 10.29173/ikc3571.
18. Sun J., Tappe S., Kostrovitsky S.I., Liu C-Z., Skuzovatov S.Yu., Wu F-Y. Mantle sources of kimberlites through time: A U-Pb and Lu-Hf isotope study of zircon megacrysts from the Siberian diamond fields. Chemical Geology. 2018;479:228-240. doi: 10.1016/j.chemgeo.2018.01.013.
19. Komarov A.N., Ilupin I.P. Geochronology of kimberlites of the Siberian Platform according to the track method data. Geokhimiya. 1990;3:365-372. (In Russ.).
20. Fefelov N.N., Kostrovitskii S.I., Zarudneva N.V. Pb isotopic composition in Russian kimberlites. Geologiya i geofizika = Russian Geology and Geophysics. 1992;33(11):102-107. (In Russ.).
21. Griffin W.L., Ryan C.G., Kaminsky F.V., Suzanne Y., Natapov L.M., Win T.T., et al. The Siberian lithosphere traverse: mantle terrains and the assembly of the Siberian Craton. Tectonophysics. 1999;310(1-4):1-35. doi: 10.1016/S0040-1951(99)00156-0.
22. Davis G.L., Sobolev N.V., Kharkiv A.D. New data on the age of Yakutian kimberlites obtained from the ratio of lead and uranium isotopes in zircons. Doklady Akademii nauk SSSR. 1980;254(1):175-179. (In Russ.).
23. Levchenkov O.A., Gaidamako I.M., Levskii L.K., Komarov A.N., Yakovleva S.Z., Rizvanova N.G., et al. U-Pb age of zircon from the Mir and 325 Let Yakutii pipes. Doklady Akademii nauk. 2005;400(2):233-235. (In Russ.). EDN: HSFQPD.
24. Lepekhina E., Rotman A., Antonov A., Sergeev S. SHRIMP U-Pb zircon ages of Yakutian kimberlite pipes. International Kimberlite Conference: proceedings of the 9<sup>th</sup> International kimberlite conference. Frankfurt: Elsevier; 2008, vol. 9. doi: 10.29173/ikc3572.
25. Kostrovitsky S.I., Alymova N.V., Yakovlev D.A. Kimberlites and megacryst association of minerals, Sr-Nd systematics. In: Izotopnye sistemy i vremya geologicheskikh protsessov : materialy IV Ross. konf. po izotopnoi geokhronologii = Isotope systems and time of geological processes : proceedings of the 4<sup>th</sup> Russian conference on isotope geochronology. 2–4 June 2009, Saint Petersburg. Saint Petersburg; 2009, vol. 1, p. 260-261. (In Russ.).
26. Agashev A.M., Pokhilenko N.P., Mal’kovets V.G., Sobolev N.V., Tolstov A.V., Polyanichko V.V. New age data on kimberlites from the Yakutian diamondiferous province. Doklady Akademii nauk. 2004;399(1):95-99. (In Russ.). EDN: OPTXGH.
27. Bobrievich A.P., Sobolev V.S. Petrography and mineralogy of kimberlite rocks of Yakutia. Moscow: Nedra; 1964, 192 p. (In Russ.).
28. Kostrovitsky S.I., Travin A.V., Alymova N.V., Yakovlev D.A. Phlogopite megacrysts from kimberlites, Ar-Ar age determinations. In: Izotopnye sistemy i vremya geologicheskikh protsessov: materialy IV Ross. konf. po izotopnoi geokhronologii = Isotope systems and time of geological processes: proceedings of the 4<sup>th</sup> Russian conference on isotope geochronology. 2–4 June 2009, Saint Petersburg. Saint Petersburg; 2009, vol. 1, p. 263-265. (In Russ.).
29. Sarsadskikh N.N., Blagulkina V.A., Silin Yu.I. On the absolute age of Yakutian kimberlites. Doklady Akademii nauk SSSR. 1966;168(2):420-423. (In Russ.).
30. Kostrovitsky S.I., Solov’eva L.V., Yakovlev D.A., Suvorova L.F., Sandimirova G.P., Travin A.V., et al. Kimberlites and megacrystic suite: isotope-geochemical studies. Petrology. 2013;21(2):127-144. doi: 10.1134/S0869591113020057.
31. Spetsius Z.V., Taylor L.A. Diamonds of Siberia: photographic evidence for their origin. Lenoir City: Tranquility Base Press; 2008. 278 p.
32. Zezekalo M.Yu., Spezicius Z.V., Tarskikh O.V. On some material composition features of kimberlite pipes of the Verkhnemunskoe field. In: Problemy prognozirovaniya i poiskov mestorozhdenii almazov na zakrytykh territoriyakh : materialy konf. = Forecasting and searching issues of diamond deposits in closed areas : proceedings of the conference. 18–20 March 2008, Mirny. Mirny; 2008, p. 162-168. (In Russ.).
33. Scott Smith B.H., Nowicki T.E., Russell J.K., Webb K.J., Mitchell R.H., Hetman C.M., et al. A glossary of kimberlite and related terms. Part 1. North Vancouver: Scott-Smith Petrology Inc.; 2018. 144 p.
34. Kostrovitsky S.I., Yakovlev D.A., Morikiyo T., Serov I.V., Amirzhanov A.A. Isotope-geochemical systematics of kimberlites and related rocks from the Siberian platform. Geologiya i geofizika = Russian Geology and Geophysics. 2007;48(3):350-371. (In Russ.). EDN: IBCKOT.
35. Kostrovitskii S.I., Morikiyo T., Serov I.V., Rotman A.Ya. Origin of kimberlites: evidence from isotopic-geochemical data. Doklady Akademii nauk. 2004;399(2):236-240. (In Russ.). EDN: OPTYPH.
36. Yakovlev D.A., Kostrovitsky S.I., Fosu B.R., Ashchepkov I.V. Diamondiferous kimberlites from recently explored Upper Muna field (Siberian craton): petrology, mineralogy and geochemistry insights. Geological Society of London, Special Publications. 2021;513(1):71-102. doi: 10.1144/SP513-2021-9.
37. Gernon T.M., Brown R.J., Tait M.A., Hincks T.K. The origin of pelletal lapilli in explosive kimberlite eruptions. Nature Communications. 2012;3:832. doi: 10.1038/ncomms1842.
38. Zijderveld J.D.A. Demagnetization of rocks, analysis of results. In: Collinson D.W., Creer K.M., Runcorn S.K. (eds). Methods in paleomagnetism. Amsterdam: Elsevier; 1967, p. 254-286.
39. Savrasov D.I., Kamysheva G.G. Direction of remanent magnetization in kimberlites In: Magnetizm gornykh porod i paleomagnetizm : materialy V Vsesoyuzn. konf. po paleomagnetizmu = Rock magnetism and paleomagnetism: proceedings of the 5<sup>th</sup> All-Union Conference on paleomagnetism. 10–17 June 1962, Krasnoyarsk. Krasnoyarsk; 1963, p. 124-129. (In Russ.).
40. Zhitkov A.N., Savrasov D.I. Palеomagnetism and the ages of kimberlites exemplified by the four pipes of Yakutia. In: Extended Abstracts: 6th International Conference. Novosibirsk: United Institute of Geology, Geophysics and Mineralogy, Siberian Branch of Russian Academy of Sciences; 1995, vol. 6, p. 695-697. doi: 10.29173/ikc2018.
41. Kravchinsky V.A., Konstantiniv K.M., Courtillot V., Savrasov J.I., Valet J-P., Cherniy S.D., et al. Paleomagnetism of East Siberian traps and kimberlites: two new poles and paleogeographic reconstructions at about 360 and 250 Ma. Geophysical Journal International. 2002;148(1):1-33. doi: 10.1046/j.0956-540x.2001.01548.x.
42. Konstantinov K.M. Age of natural remanent magnetization of kimberlites of the Yakut diamondiferous province. Nauka i obrazovanie. 2010;1:47-54. (In Russ.). EDN: LBECAL.
43. Konstantinov K.M., Zabelin A.V., Zaitsevskiy F.K., Konstantinov I.K., Kirguev A.A., Khoroshikh M.S. Structure and functions of the petromagnetic “Rsearch” database of the Yakut kimberlite province. Geoinformatika. 2018;4:30-39. (In Russ.). EDN: YPXHRB.
44. Tarling D.H., Hrouda F. The magnetic anisotropy of rocks. London: Chapman & Hall; 1993, 217 p.
45. Mitchell R.H. Kimberlites: mineralogy, geochemistry and petrology. New York: Plenum Press; 1986, 442 p.
46. Konstantinov K.M., Artemova E.V., Konstantinov I.K., Yakovlev A.A., Kirguev A.A. Possibilities of the method of anisotropy of magnetic susceptibility in the solution of geologic-geophysical problems of search radical diamond fields. Geofizika. 2018;1;67-77. (In Russ.). EDN: YWMSHU.
47. Konstantinov K.M., Khoroshikh M.S. Anisotropy of magnetic susceptibility of kimberlites. In: Problemy geokosmosa : materialy XII Mezhdunar. konf. = Problems of geospace: proceedings of the 12<sup>th</sup> International conference. 8–12 October 2018, Saint Petersburg. Saint Petersburg; 2018, p. 140-145. (In Russ.). EDN: SMYYOH.
48. Day R., Fuller M.D., Schmidt V.A. Hysteresis properties of titanomagnetites: grain size and composition dependence. Physics of the Earth and Planetary Interiors. 1977;13(4):260-267. doi: 10.1016/0031-9201(77)90108-X.
49. Dunlop D.J., Ozdemir O. Rock Magnetism. Fundamentals and frontiers. Cambridge: Cambridge University Press; 1997, 573 p. doi: 10.1017/CBO9780511612794.
50. McFadden P.L., McElhinny M.W. The combined analysis of remagnetization and direct observation in paleomagnetism. Earth and Planetary Science Letters. 1988;87(1-2):161-172. doi: 10.1016/0012-821X(88)90072-6.
51. Borovikov V.P. STATISTICA: the art of data analysis on computer. For professionals. Saint Petersburg: Piter; 2001, 658 p. (In Russ.).
52. Vinarskii Y.S., Zhitkov A.N., Kravchinsky A.Y. Automated system for processing paleomagnetic data of OPAL. Moscow: All-Russian Institute of Economics of Mineral Raw Materials and Subsoil Use; 1987, 86 p. (In Russ.).
53. Enkin R.J. A computer program package for analysis and presentation of paleomagnetic data. Sidney: The Pacific Geoscience Centre; 1994, 16 p.
54. Jelinek V. Measuring anisotropy of magnetic susceptibility on a slowly spinning specimen – basic theory. Brno: Agico; 1997, 27 p.
55. Rodionov D.A. Distribution functions of element and mineral content in igneous rocks. Moscow: Nauka; 1964, 102 p. (In Russ.).
56. Kvachevskiy O.A. On the use of statistical analysis data on physical properties of rocks and ores to assess application potential of geophysical methods. In: Voprosy razvitiya geofiziki = Issues of Geophysics Development. Moscow: Research Centre of Applied Geophysics; 1968, iss. 7. (In Russ.).
57. Konstantinov K.M., Mishenin S.G., Savrasov D.I., Khuzin M.Z., Ubinin S.G., Tomshin M.D., et al. Development of petromagnetic legend of structural-material complexes of the Yakutsk diamondiferous province In: Paleomagnetizm i magnetizm gornykh porod: teoriya, praktika, eksperiment = Paleomagnetism and magnetism of rocks: theory, practice, experiment: proceedings of the seminar. 19–22 October 2006, Borok. Borok; 2006, p. 70-75. (In Russ.).
58. Trukhin V.I., Zhilyaeva V.A., Zinchuk N.N., Romanov N.N. Magnetism of kimberlites and traps. Moscow: Moscow State University; 1989, 165 p. (In Russ.).
59. Konstantinov K.M., Yakovlev А.A., Antonova Т.А., Konstantinov I.К., Ibragimov Sh.Z., Artemova E.V. Petro- and paleomagnetic characteristics of the structural–material complexes of the diamond mining of the Nyurbinskaya pipe (Middle Markha district, West Yakutia). Geodinamika i tektonofizika = Geodynamics & Tectonophysics. 2017;8(1):135-169. (In Russ.). doi: 10.5800/GT-2017-8-1-0235. EDN: YPOZID.
60. Konstantinov I.K., Khuzin M.Z., Konstantinov K.M. Paleomagnetic studies of the Upper Cambrian Verkholensk Formation rocks (south of the Siberian Craton). Nauka i obrazovanie. 2011;3:10-15. (In Russ.). EDN: OGGYPJ.
61. Milashev V.A. Physical and chemical conditions of kimberlite formation. Leningrad: Nedra; 1972, 175 p. (In Russ.).
62. Hnatyshin D., Kravchinsky V.A. Paleomagnetic dating: methods, MATLAB software, example. Tectonophysics. 2014;630:103-112. doi: 10.1016/j.tecto.2014.05.013.
63. Blanco D., Kravchinsky V.A., Konstantinov K.M., Kabin K. Paleomagnetic dating of Phanerozoic kimberlites in Siberia. Journal of Applied Geophysics. 2013;88:139-153. doi: 10.1016/j.jappgeo.2012.11.002.
64. Parshin A.V., Budyak A.E., Blinov A.V., Kosterev A.N., Morozov V.A., Mikhalev A.O., et al. Low-altitude unmanned aeromagnetic survey in management of large-scale structural geological mapping and prospecting for ore deposits in composite topography. Part 2. Geografiya i Prirodnye resursy. 2016;S6:150-155. (In Russ.). doi: 10.21782/GIPR0206-1619-2016-6(150-155). EDN: XQRZBR.
65. Parshin A.V., Morozov V.A., Blinov A.V., Kosterev A.N., Budyak A.E. Low-altitude geophysical magnetic prospecting based on multirotor UAV as a promising replacement for traditional ground survey. Geo-Spatial Information Science. 2018;21(1):67-74. doi: 10.1080/10095020.2017.1420508. EDN: XXHXRZ.
Review
For citations:
Khoroshikh M.S., Konstantinov K.M., Sharygin I.S., Kuzina D.M., Potapov S.V., Kokodey D.Yu. Petromagnetism and paleomagnetism of kimberlite pipesof the Verkhnemunskoe deposit (Yakutsk diamondiferous province). Earth sciences and subsoil use. 2024;47(1):100-128. https://doi.org/10.21285/2686-9993-2024-47-1-100-128. EDN: AVKQNU