Rock classification according to seismo-electric and electrokinetic effect occurrence
https://doi.org/10.21285/2686-9993-2024-47-3-262-279
EDN: FJKFMC
Abstract
The seismoelectric effect and the effect of induced polarization of the electro-osmotic type belong to the category of electrokinetic phenomena. The theoretical foundations of both effects are based on the Helmholtz – Smoluchowski equations applied to streaming potentials and electro-osmosis. However, electrokinetic phenomena of significant amplitude do not occur in every type of rocks. Using the mathematical concepts of M. Biot who regarded the fluid motion relative to a solid matrix for slow seismic waves in the wave equation and R.N. Chandler’s problem on transient pressure inside a pore, the amplitude of seismoelectric effect in porous rocks has been calculated. The purpose of the study is to present the analysis results of the amplitudes of electrokinetic effects that occur either when a pressure gradient is imposed on the rock or when there is a potential difference, based on F. Gassman’s classification of the relationship between the components of distinguishing rocks with perfect, imperfect and absent connections between the phases. It has been shown that seismoelectric effect does not occur in rocks with no bonding between the components, where the pore filler freely circulates in the pore space and pores are well connected to each other. The rocks with perfect connection also feature no motion of pore moisture as a result electrokinetic phenomena in these rocks are suppressed. The seismoelectric effect and electroosmotic phenomena occur only in the rocks with imperfect bonding between the components (rocks with low, medium and partially high permeability (except clays)) with the pore radius of 1·10-6–n·10-4 m. The effects of induced polarization distort TEM signals and can be detected only at the values of the induced polarization decay constant of ~ 1 μs – n ms.
About the Author
V. Yu. Hallbauer-ZadorozhnayaRussian Federation
Valeriya Yu. Hallbauer-Zadorozhnaya, Cand. Sci. (Geol.-Mineral.), Professor
Irkutsk
Competing Interests:
The author declares no conflicts of interests
References
1. Ivanov A.G. The effect of electrification of the Earth’s layers during the elastic waves’ propagation. Academy of Sciences of the USSR. 1939;24(1):41-43. (In Russ.).
2. Ivanov A.G. Electroseismic effect of the second order. Izvestiya Akademii nauk SSSR. Seriya geograficheskaya i geofizicheskaya. 1940;9(5):699-727. (In Russ.).
3. Ageeva O.A., Svetov B.S., Sherman G.K., Shipulin V. E-effect in rocks. Russian Geology and Geophysics. 1999;64:1349-1356.
4. Martner S.T., Sparks N.R. The electroseismic effect. Geophysics. 1959;24(2):297-308. https://doi.org/10.1190/1.1438585.
5. Broding R.A., Buchanan S.D., Hearn D.P. Field experiments on the electroseismic effect. IEEE Transactions on Geoscience Electronics. 1963;1(1):23-31. https://doi.org/10.1109/TGE.1963.271176.
6. Parkhomenko E.I., Gaskarov I.V. Borehole and laboratory studies of the second-order seismoelectric effect in rocks. Izvestiya Akademii nauk SSSR. Fizika Zemli. 1971;9:88-92. (In Russ.).
7. Migunov N.I. On the seismoelectromagnetic effect of ore bodies. Izvestiya Akademii nauk SSSR. Fizika Zemli. 1987;11:99-107. (In Russ.).
8. Neev J., Yatts F.R. Electrokinetic effects in fluid saturated poroelastic media. Physical Review B. 1989;40(13):9135-9141. https://doi.org/10.1103/physrevb.40.9135.
9. Maxwell M., Russel R.D., Kepic A.W., Butler K.E. Electromagnetic responses from seismically excited targets B: non piezoelectric phenomena. Exploration Geophysics. 1992;23(2):201-208. https://doi.org/10.1071/EG992201.
10. Thompson A.H., Gist G.A. Geophysical applications of electrokinetic conversion. The Leading Edge. 1993;12(12):1169-1173.
11. Butler K.E., Russell R.D., Kepic A.W., Maxwell M. Measurement of the seismoelectric response from a shallow boundar. Geophysics. 1996;61(6):1769-1778. https://doi.org/10.1190/1.1444093.
12. Butler K.E., Russell R.D., Kepic A.W., Maxwell M. Seismoelectric exploration. The Leading Edge. 1997;16(11):1611-1615. https://doi.org/10.1190/1.1437536.
13. Mikhailov O.V., Haartsen M.W., Toköz M.N. Electroseismic investigation of the shallow subsurface: field experiments and numerical modeling. Geophysics. 1996;62(1):97-105. https://doi.org/10.1190/1.1444150.
14. Mikhailov O.V., Queen J., Toköz M.N. Using borehole electroseismic measurements to detect and characterize fractured (permeable) zone. Geophysics. 2000;65(4):1098-1112. https://doi.org/10.1190/1.1444803.
15. Beamish D. Characteristic of near surface electrokinetic coupling. Geophysical Journal International. 1999;137(1):231-242. https://doi.org/10.1046/j.1365-246x.1999.00785.x.
16. Svetov B.S., Ageev V.V., Aleksandrov P.N., Ageeva O.A., Bababyants I.P., Balandina S.E., et al. Some results of experimental field seismoelectric studies. Geophysics. 2002;6:47-52. (In Russ.). EDN: VBTEQX.
17. Svetov B.S., Ageeva O.A., Lisitsyn V.S. Borehole studies of seismoelectric phenomena. Geophysics. 2001;3:44-48. (In Russ.).
18. Alekseev D.A., Gokhberg M.B., Goncharov A.A., Pliss A.O. Numerical simulation of the seismoelectric field generated by the impulse siesmic source. Russian Academy of Natural Sciences. 2022;22(4):69-79. (In Russ.). https://doi.org/10.52531/1682-1696-2022-22-4-69-79.
19. Molchanov A.A., Sidorov V.A., Nikolaev Yu.V., Yakhin A.M. New types of transient processes in electromagnetic soundings. Izvestiya Akademii nauk SSSR. Fizika Zemli. 1984;1:100-103. (In Russ.).
20. Walker G.G., Kawasaki K. Observation of double sign reversals in transient electromagnetic central induction soundings. Exploration. 1988;25(3):245-254.
21. Gubatenko V.P. Maxwell – Wagner effect in electrical prospecting. Izvestiya Akademii nauk SSSR. Fizika Zemli. 1991;4:326-334. (In Russ.).
22. Berdichevsky M.N., Gubatenko V.P., Svetov B.S. Frequency dispersion of the electrical properties of a macroanisotropic medium. Izvestiya Akademii nauk SSSR. Fizika Zemli. 1995;9:42-48. (In Russ.).
23. Zadorozhnaya V.Yu., Bessonov A.D. The effect of induced polarization as an indicator of groundwater pollution by hydrocarbons. Russian Geology and Geophysics. 2002;12:1074-1084. (In Russ.).
24. Kozhevnikov N.O., Antonov E.Yu., Zakharkin A.K., Korsakov M.A. TEM surveys for search of taliks in areas of strong fast-decaying IP effect. Russian Geology and Geophysics. 2014;55(2):1452-1460. https://doi.org/10.1016/j.rgg.2014.11.009.
25. Gassman F. Über die Elastizität Poröser Medien. Mitteilunden aus dem Institut für Geophysik. 1951;96:1-53. (In Germ.).
26. Hallbauer-Zadorozhnaya V.Yu., Stettler E.H. Electrokinetic soundings: mathematical modeling and interpretation of field data. In: Pervaya vserossiiskaya shkola-seminar po ehlektromagnitnym zondirovaniyam Zemli: tezisy dokladov = The First All-Russian school-seminar on electromagnetic sounding of the Earth: abstracts of reports. 4–7 October 2021, Moscow. Moscow; 2021, p. 120-126. (In Russ.). EDN: JGYCFF.
27. Chandler R.N. Transient streaming potential measurements on fluid-saturated pore structures: an experimental verification of Biot’s slow wave in quasi-static limit. Journal of Acoustical Society of America. 1981;70(1):116-121. https:// doi.org/10.1121/1.386689.
28. Biot M.A. Theory of propagation of elastic waves in a fluid-saturated porous solid. 1. Low frequency ranges. Journal of Acoustical Society of America. 1956;28:168-178. https://doi.org/10.1121/1.1908239.
29. Chandler R.N., Johnson D.L. The equivalence of quasistatic flow in fluid-saturated porous media and Biot’s slow wave in the limit of zero frequency. Journal of Applied Physics. 1981;52(5):3391-3395.
30. Hallbauer-Zadorozhnaya V.Yu. Fractal model of rocks – a useful model for the calculation of petrophysical parameters. International Journal of Communications, Network and System Sciences. 2013;6(4):186-196. https://doi.org/10.4236/ijcns.2013.64022.
Review
For citations:
Hallbauer-Zadorozhnaya V.Yu. Rock classification according to seismo-electric and electrokinetic effect occurrence. Earth sciences and subsoil use. 2024;47(3):262-279. (In Russ.) https://doi.org/10.21285/2686-9993-2024-47-3-262-279. EDN: FJKFMC