Preview

Earth sciences and subsoil use

Advanced search

Analysis of natural water resources formation and distribution conditions in Central Ethiopia

https://doi.org/10.21285/2686-9993-2025-48-1-65-76

EDN: VQFHHZ

Abstract

Water is the most important natural resource that ensures Earth’s ecological system operation. The variability of the resource potential of the hydrosphere has a significant, if not decisive, impact on the socio-economic development of the world including Ethiopia in general and its central regions in particular where surface water is the main source of water supply. Growing urbanization, industrialization and agricultural development have increased the demand for multipurpose water supply in the agricultural, industrial and energy sectors of Ethiopia. Due to the increased water demand during the dry seasons of the year the country faces severe water shortages, while the amount of surface water  during the rainy sea sons quite accommodates modern demands. The purpose of this study is to analyze the natural formation and distribution conditions of surface and groundwater resource potential in Central Ethiopia as well as to identify the most promising sites for groundwater prospecting and exploration. Having processed and analyzed the materials using Google Earth Engine cloud technologies and a number of software packages, it was determined that the structural and tectonic development of the territory caused by the region’s confinement to the East African Rift Zone, plays a decisive role in the formation of natural conditions both in Ethiopia as a whole and in its central part in the distribution of natural water resources. The relief, climatic features, and main geomorphological and geological structures are the result of past and ongoing tectonic pro cesses. Understanding of surface and groundwater formation and distribution conditions in the region, significant volume of source material, and the use of modern processing means create the basis for a quantitative assessment of surface water resources and the delineation of the most water-abundant areas of the subsoil.

About the Authors

A. K. Yoshe
Irkutsk National Research Technical University; Arba Minch University
Russian Federation

Agegnehu K. Yoshe, Postgraduate Student, Siberian School of Geosciences; Lecturer of the Department of Water Resources and Irrigation Engineering

Irkutsk

Arba Minch, Ethiopia


Competing Interests:

Larisa I. Auzina has been a member of the editorial board of the Earth Sciences and Subsoil Use journal since 2018, but she did not take part in making decision about publishing the article under consideration. The article was peer reviewed following the journal’s review procedure. The authors do not report any other confl icts of interests.



L. I. Auzina
Irkutsk National Research Technical University
Russian Federation

Larisa I. Auzina, Cand. Sci. (Geol. & Mineral.), Associate Professor, Head of the Hydrogeology Laboratory, Siberian School of Geosciences

Irkutsk


Competing Interests:

Larisa I. Auzina has been a member of the editorial board of the Earth Sciences and Subsoil Use journal since 2018, but she did not take part in making decision about publishing the article under consideration. The article was peer reviewed following the journal’s review procedure. The authors do not report any other confl icts of interests.



References

1. Hsu Y.J., Fu Y., Bürgmann R., Hsu S.Y., Lin C.C., Tang C.H., et al. Assessing seasonal and interannual water storage variations in Taiwan using geodetic and hydrological data // Earth and Planetary Science Letters. 2020. Vol. 550. P. 116532. https://doi.org/10.1016/j.epsl.2020.116532.

2. Du C., Sun F., Yu J., Liu X., Chen Y. New interpretation of the role of water balance in an extended Budyko hypoth esis in arid regions // Hydrology and Earth System Sciences. 2016. Vol. 20. Iss. 1. P. 393–409. https://doi.org/10.5194/hess-20-393-2016.

3. Bouaziz L.J.E., Steele-Dunne S.C., Schellekens J., Weerts A.H., Stam J., Sprokkereef E., et al. Improved under standing of the link between catchment-scale vegetation accessible storage and satellite-derived soil water index // Water Resources Research. 2020. Vol. 56. Iss. 3. P. e2019WR026365. https://doi.org/10.1029/2019WR026365.

4. Yoshe A.K. Water availability identification from GRACE dataset and GLDAS hydrological model over data-scarce river basins of Ethiopia // Hydrological Sciences Journal. 2024. Vol. 69. Iss. 6. P. 721–745. https://doi.org/10.1080/02626667.2024.2333852.

5. Goldblatt R., You W., Hanson G., Khandelwal A.K. Detecting the boundaries of urban areas in India: a dataset for pixel-based image classification in Google Earth Engine // Remote Sensing. 2016. Vol. 8. Iss. 8. P. 634. https://doi.org/10.3390/rs8080634.

6. Mekonnen M.M., Hoekstra A.Y. Four billion people facing severe water scarcity // Science Advances. 2016. Vol. 2. Iss. 2. P. e1500323. https://doi.org/10.1126/sciadv.1500323.

7. Auzina L.I. Forecasting groundwater rise in the historic downtown area of Irkutsk city // Науки о Земле и недропользование. 2022. Т. 45. № 2. С. 172–183. https://doi.org/10.21285/2686-9993-2022-45-2-172-183. EDN: POJFVK.

8. Salman M.A. United nations general assembly resolution: international decade for action, water for life, 2005–2015 // Water International. 2005. Vol. 30. Iss. 3. P. 415–418. https://doi.org/10.1080/02508060508691884.

9. Li J., Yang J., Liu M., Ma Z., Fang W., Bi J. Quality matters: pollution exacerbates water scarcity and sectoral output risks in China // Water Research. 2022. Vol. 224. P. 119059. https://doi.org/10.1016/j.watres.2022.119059.

10. Wang M., Bodirsky B.L., Rijneveld R., Beier F., Bak M.P., Batool M., et al. A triple increase in global river basins with water scarcity due to future pollution // Nature Communication. 2024. Vol. 15. Iss. 1. P. 880. https://doi.org/10.1038/s41467-024-44947-3.

11. Uddin M.G., Nash S., Olbert A.I. A review of water quality index models and their use for assessing surface water quality // Ecological Indicators. 2021. Vol. 122. P. 107218. https://doi.org/10.1016/j.ecolind.2020.107218.

12. Fu Y., Wu Q. Recent emerging shifts in precipitation intensity and frequency in the global tropics observed by satellite precipitation data sets // Geophysical Research Letters. 2024. Vol. 51. Iss. 15. P. e2023GL107916. https://doi.org/10.1029/2023GL107916.

13. Dao P.U., Heuzard A.G., Le T.X.H., Zhao J., Yin R., Shang C., et al. The impacts of climate change on ground water quality: a review // Science of the Total Environment. 2024. Vol. 912. P. 169241. https://doi.org/10.1016/j.scito tenv.2023.169241.

14. Bartczak A., Krzemiński M., Araźny A. Changes in evaporation patterns and their impact on Climatic Water Bal ance and river discharges in central Poland, 1961–2020 // Regional Environmental Change. 2024. Vol. 24. Iss. 130. https://doi.org/10.1007/s10113-024-02296-3.

15. Wang M., Zhang Y., Lu Y., Gong X., Gao L. Detection and attribution of reference evapotranspiration change (1951–2020) in the Upper Yangtze River Basin of China // Journal of Water and Climate Change. 2021. Vol. 12. Iss. 6. P. 2624–2638. https://doi.org/10.2166/wcc.2021.011.

16. Vörösmarty C.J., Green P., Salisbury J., Lammers R.B. Global water resources: vulnerability from cli mate change and population growth // Science. 2000. Vol. 289. Iss. 5477. P. 284–288. https://doi.org/10.1126/science.289.5477.284.

17. Punia A., Singh S.K., Bharti R. Chapter 3 – Effect of climate change on urban water availability and its remedi ation in different continents // Current directions in water scarcity research. Vol. 6: Urban water crisis and management. Strategies for sustainable development / eds A.L. Srivastav, S. Madhav, A.K. Bhardwaj, E. Valsami-Jones. Elsevier, 2022. P. 45–63. https://doi.org/10.1016/B978-0-323-91838-1.00002-6.

18. Marsz A.A., Sobkowiak L., Styszyńska A., Wrzesiński D. Causes and course of climate change and its hydro logical consequences in the Greater Poland region in 1951–2020 // Quaestiones Geographicae. 2022. Vol. 41. Iss. 3. P. 183–206. https://doi.org/10.2478/quageo-2022-0033.

19. Wubneh M.A., Worku T.A., Chekol B.Z. Climate change impact on water resources availability in the kiltie wa tershed, Lake Tana sub-basin, Ethiopia // Heliyon. 2023. Vol. 9. Iss. 3. P. e13941. https://doi.org/10.1016/j.heliyon.2023.e13941.

20. Gbohoui Y.P., Paturel J.E., Tazen F., Mounirou L.A., Yonaba R., Karambiri H., et al. Impacts of climate and environmental changes on water resources: a multi-scale study based on Nakanbé nested watersheds in West African Sahel // Journal of Hydrology: Regional Studies. 2021. Vol. 35. P. 100828. https://doi.org/10.1016/j.ejrh.2021.100828.

21. Лобацкая Р.М., Аузина Л.И., Чжан Ю., Вантеева М.А., Сапрыкина М.И., Семилет А.А. [и др.]. Сравнительный анализ кайнозойского вулканизма Восточно-Китайского блока и Тункинской рифтовой зоны Байкальской рифтовой системы // Науки о Земле и недропользование. 2020. Т. 43. № 1. С. 121–131. https://doi.org/10.21285/2686-99932020-43-1-121-131. EDN: GDUDFM.

22. Сурмаажав Д. Особенности проявлений термальных вод Хангайского сводового поднятия (Монголия) // Науки о Земле и недропользование. 2019. Т. 42. № 4. С. 529–538. https://doi.org/10.21285/2686-9993-2019-42-4-529 538. EDN: RUHRSY.

23. Эппельбаум Л.В., Бен-Аврахам Ц., Кац Ю.И., Клотинг С., Кабан М.К. Гигантская квази-кольцевая мантийная структура в зоне Африкано-Аравийского сочленения: данные комплекса геологических и геофизических исследований // Геотектоника. 2021. № 1. С. 662–693. https://doi.org/10.31857/S0016853X21010057. EDN: SGRGEM.

24. Avand M., Janizadeh S., Bui D.T., Pham V.H., Ngo P.T.T., Nhu V.H. A tree-based intel-ligence ensemble approach for spatial prediction of potential groundwater // International Journal of Digital Earth. 2020. Vol. 13. Iss. 12. P. 1408–1429. https://doi.org/10.1080/17538947.2020.1718785.

25. Chen C., Zou X., Singh A.K., Zhu X., Zhang W., Yang B., et al. Effects of hillslope position on soil water infiltra tion and preferential flow in tropical forest in southwest China // Journal of Environmental Management. 2021. Vol. 299. P. 113672. https://doi.org/10.1016/j.jenvman.2021.113672.

26. Yoshe A.K. Integrated approach for groundwater potential exploration in Abbay River Basin, East Africa // Sustain able Water Resources Management. 2024. Vol. 10. Iss. 93. https://doi.org/10.1007/s40899-023-01026-7. 27. Chen C.-H., Wang C.-H., Hsu Ya-J., Yu S.-B., Kuo L.-Ch. Correlation between groundwater level and altitude variations in land subsidence area of the Choshuichi Alluvial Fan, Taiwan // Engineering Geology. 2010. Vol. 115. Iss. 1–2. P. 122–131. https://doi.org/10.1016/j.enggeo.2010.05.011.

27. Wang H., Gao J.E., Zhang M., Li X., Zhang S., Jia L.Z. Effects of rainfall intensity on groundwater recharge based on simulated rainfall experiments and a groundwater flow model // Catena. 2015. Vol. 127. P. 80–91. https://doi.org/10.1016/j.catena.2014.12.014.

28. Seleshi Y., Zanke U. Recent changes in rainfall and rainy days in Ethiopia // International Journal of Climatology. 2004. Vol. 24. Iss. 8. P. 973–983. https://doi.org/10.1002/joc.1052.

29. Wu W.-Y., Lo M.-H., Wada Y., Famiglietti J.S., Reager J.T., Yeh P.J.-F., et al. Divergent effects of climate change on future groundwater availability in key mid-latitude aquifers // Nature Communications. 2020. Vol. 11. Iss. 1. P. 3710. https://doi.org/10.1038/s41467-020-17581-y.

30. Shaikh A.A., Pathan A.I., Waikhom S.I., Rathod P. Comparison of watershed delineation and drainage network using ASTER and CARTOSAT DEM of Surat City, Gujarat // Intelligent Computing & Optimization. ICO 2021. Lecture Notes in Networks and Systems. Cham: Springer, 2022. Vol. 371. P. 788–800. https://doi.org/10.1007/978-3-030-93247-3_75.


Review

For citations:


Yoshe A.K., Auzina L.I. Analysis of natural water resources formation and distribution conditions in Central Ethiopia. Earth sciences and subsoil use. 2025;48(1):65-76. https://doi.org/10.21285/2686-9993-2025-48-1-65-76. EDN: VQFHHZ

Views: 264


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2686-9993 (Print)
ISSN 2686-7931 (Online)