Preview

Науки о Земле и недропользование

Расширенный поиск

Анализ условий формирования и распределения ресурсов природных вод на территории Центральной Эфиопии

https://doi.org/10.21285/2686-9993-2025-48-1-65-76

EDN: VQFHHZ

Аннотация

Вода – важнейший природный ресурс, обеспечивающий функционирование экологической системы Земли. Изменчивость ресурсного потенциала гидросферы оказывает существенное, если не определяющее, влияние на социально-экономическое развитие мира, включая Эфиопию, особенно ее центральные районы, где основным источником водоснабжения являются поверхностные воды. Растущие урбанизация, индустриализация и развитие сельского хозяйства привели к увеличению спроса на разноцелевое водоснабжение в аграрном секторе, промышленности и энергетике. Из-за возросшего спроса на воду в засушливые сезоны года в стране ощущается острая ее нехватка, в то же время в сезоны дождей количество поверхностных вод вполне удовлетворяет современные потребности. Цель данного исследования – анализ природных условий формирования и распределения ресурсного потенциала поверхностных и подземных вод Центральной Эфиопии, выявление участков, наиболее перспективных для поисково-разведочных работ на подземные воды. В результате обработки и анализа материалов, которые осу ществлялись с использованием облачных технологий Google Earth Engine и ряда программных комплексов, опре делено, что решающее значение в формировании природных условий как Эфиопии в целом, так и ее центральной части в распределении ресурсов природных вод играет структурно-тектоническое развитие территории, обусловленное приуроченностью региона к Восточно-Африканской рифтовой зоне. Рельеф, климатические особенности, основные геоморфологические и геологические структуры – результат прошедших и продолжающихся тектонических процессов. Понимание условий формирования и распределения поверхностных и подземных вод региона, значительный объем исходного материала, использование современных средств его обработки являются базой для количественной оценки ресурсов поверхностных вод и оконтуривания наиболее водообильных участков недр.

Об авторах

А. К. Йоше
Иркутский национальный исследовательский технический университет; Университет Арба Минч
Россия

Йоше Агегнеху Китанбо, аспирант, институт «Сибирская школа геонаук»; преподаватель кафедры охраны окружающей среды

г. Иркутск

г. Арба Минч, Эфиопия


Конфликт интересов:

Аузина Л.И. является членом редакционной коллегии журнала «Науки о Земле и недропользование» с 2018 года, но не имеет отношения к решению опубликовать эту статью. Статья прошла принятую в журнале процедуру рецензирования. Об иных конфликтах авторы не заявляли.



Л. И. Аузина
Иркутский национальный исследовательский технический университет
Россия

Аузина Лариса Ивановна, кандидат геолого-минералогических наук, доцент, руководитель лаборатории гидрогеологии, институт «Сибирская школа геонаук»

г. Иркутск


Конфликт интересов:

Аузина Л.И. является членом редакционной коллегии журнала «Науки о Земле и недропользование» с 2018 года, но не имеет отношения к решению опубликовать эту статью. Статья прошла принятую в журнале процедуру рецензирования. Об иных конфликтах авторы не заявляли.



Список литературы

1. Hsu Y.J., Fu Y., Bürgmann R., Hsu S.Y., Lin C.C., Tang C.H., et al. Assessing seasonal and interannual water stor age variations in Taiwan using geodetic and hydrological data. Earth and Planetary Science Letters. 2020;550:116532. https://doi.org/10.1016/j.epsl.2020.116532.

2. Du C., Sun F., Yu J., Liu X., Chen Y. New interpretation of the role of water balance in an extended Budyko hypothe sis in arid regions. Hydrology and Earth System Sciences. 2016;20(1):393-409. https://doi.org/10.5194/hess-20-393-2016.

3. Bouaziz L.J.E., Steele-Dunne S.C., Schellekens J., Weerts A.H., Stam J., Sprokkereef E., et al. Improved under standing of the link between catchment-scale vegetation accessible storage and satellite-derived soil water index. Water Resources Research. 2020;56(3):e2019WR026365. https://doi.org/10.1029/2019WR026365.

4. Yoshe A.K. Water availability identification from GRACE dataset and GLDAS hydrological model over data-scarce riv er basins of Ethiopia. Hydrological Sciences Journal. 2024;69(6):721-745. https://doi.org/10.1080/02626667.2024.2333852.

5. Goldblatt R., You W., Hanson G., Khandelwal A.K. Detecting the boundaries of urban areas in India: a dataset for pixel-based image classification in Google Earth Engine. Remote Sensing. 2016;8(8):634. https://doi.org/10.3390/rs8080634.

6. Mekonnen M.M., Hoekstra A.Y. Four billion people facing severe water scarcity. Science Advances. 2016;2(2):e1500323. https://doi.org/10.1126/sciadv.1500323.

7. Auzina L.I. Forecasting groundwater rise in the historic downtown area of Irkutsk city. Earth sciences and subsoil use. 2022;45(2):172-183. https://doi.org/10.21285/2686-9993-2022-45-2-172-183. EDN: POJFVK.

8. Salman M.A. United nations general assembly resolution: international decade for action, water for life, 2005–2015. Water International. 2005;30(3):415-418. https://doi.org/10.1080/02508060508691884.

9. Li J., Yang J., Liu M., Ma Z., Fang W., Bi J. Quality matters: pollution exacerbates water scarcity and sectoral output risks in China. Water Research. 2022;224:119059. https://doi.org/10.1016/j.watres.2022.119059.

10. Wang M., Bodirsky B.L., Rijneveld R., Beier F., Bak M.P., Batool M., et al. A triple increase in global river basins with water scarcity due to future pollution. Nature Communication. 2024;15(1):880. https://doi.org/10.1038/s41467-024-44947-3.

11. Uddin M.G., Nash S., Olbert A.I. A review of water quality index models and their use for assessing surface water quality. Ecological Indicators. 2021;122:107218. https://doi.org/10.1016/j.ecolind.2020.107218.

12. Fu Y., Wu Q. Recent emerging shifts in precipitation intensity and frequency in the global tropics observed by satellite precipitation data sets. Geophysical Research Letters. 2024;51(15):e2023GL107916. https://doi.org/10.1029/2023GL107916.

13. Dao P.U., Heuzard A.G., Le T.X.H., Zhao J., Yin R., Shang C., et al. The impacts of climate change on groundwater quality: a review. Science of the Total Environment. 2024;912:169241. https://doi.org/10.1016/j.scitotenv.2023.169241.

14. Bartczak A., Krzemiński M., Araźny A. Changes in evaporation patterns and their impact on Climatic Water Bal ance and river discharges in central Poland, 1961–2020. Regional Environmental Change. 2024;24(130). https://doi.org/10.1007/s10113-024-02296-3.

15. Wang M., Zhang Y., Lu Y., Gong X., Gao L. Detection and attribution of reference evapotranspiration change (1951–2020) in the Upper Yangtze River Basin of China. Journal of Water and Climate Change. 2021;12(6):2624-2638. https://doi.org/10.2166/wcc.2021.011.

16. Vörösmarty C.J., Green P., Salisbury J., Lammers R.B. Global water resources: vulnerability from climate change and population growth. Science. 2000;289(5477):284-288. https://doi.org/10.1126/science.289.5477.284.

17. Punia A., Singh S.K., Bharti R. Chapter 3 – Effect of climate change on urban water availability and its remediation in different continents. In: Srivastav A.L., Madhav S., Bhardwaj A.K., Valsami-Jones E. (eds). Current directions in water scarcity research. Vol. 6: Urban water crisis and management. Strategies for sustainable development. Elsevier; 2022, p. 45-63. https://doi.org/10.1016/B978-0-323-91838-1.00002-6.

18. Marsz A.A., Sobkowiak L., Styszyńska A., Wrzesiński D. Causes and course of climate change and its hydrological consequences in the Greater Poland region in 1951–2020. Quaestiones Geographicae. 2022;41(3):183-206. https://doi.org/10.2478/quageo-2022-0033.

19. Wubneh M.A., Worku T.A., Chekol B.Z. Climate change impact on water resources availability in the Kiltie water shed, Lake Tana sub-basin, Ethiopia. Heliyon. 2023;9(3):e13941. https://doi.org/10.1016/j.heliyon.2023.e13941.

20. Gbohoui Y.P., Paturel J.E., Tazen F., Mounirou L.A., Yonaba R., Karambiri H., et al. Impacts of climate and envi ronmental changes on water resources: a multi-scale study based on Nakanbé nested watersheds in West African Sahel. Journal of Hydrology: Regional Studies. 2021;35:100828. https://doi.org/10.1016/j.ejrh.2021.100828.

21. Lobatskaya R.M., Auzina L.I., Zhang Y., Vanteeva M.A., Saprykina M.I., Semilet A.A., et al. Comparative analysis of Cenozoic volcanism in the East China block and Tunkinsky rift zone of the Baikal rift system. Earth sciences and subsoil use. 2020;43(1):121-131. (In Russ.). https://doi.org/10.21285/2686-9993-2020-43-1-121-131. EDN: GDUDFM.

22. Surmaajav D. Features of the thermal water phenomena in the Khangai arch uplift (Mongolia). Earth sciences and subsoil use. 2019;42(4):529-538. (In Russ.). https://doi.org/10.21285/2686-9993-2019-42-4-529-538. EDN: RUHRSY.

23. Eppelbaum L.V., Ben-Avraham C., Katz Y.I., Cloting S., Kaban M.K. Giant quasi-ring mantle structure in the Afri can-Arabian junction zone: data from a complex of geological and geophysical researchs. Geotektonika. 2021;1:662-693. (In Russ.). https://doi.org/10.31857/S0016853X21010057. EDN: SGRGEM.

24. Avand M., Janizadeh S., Bui D.T., Pham V.H., Ngo P.T.T., Nhu V.H. A tree-based intelligence ensemble approach for spatial prediction of potential groundwater. International Journal of Digital Earth. 2020;13(12):1408-1429. https://doi.org/10.1080/17538947.2020.1718785.

25. Chen C., Zou X., Singh A.K., Zhu X., Zhang W., Yang B., et al. Effects of hillslope position on soil water infiltra tion and preferential flow in tropical forest in southwest China. Journal of Environmental Management. 2021;299:113672. https://doi.org/10.1016/j.jenvman.2021.113672.

26. Yoshe A.K. Integrated approach for groundwater potential exploration in Abbay River Basin, East Africa. Sustain able Water Resources Management. 2024;10(93). https://doi.org/10.1007/s40899-023-01026-7.

27. Chen C.-H., Wang C.-H., Hsu Ya-J., Yu S.-B., Kuo L.-Ch. Correlation between groundwater level and altitude variations in land subsidence area of the Choshuichi Alluvial Fan, Taiwan. Engineering Geology. 2010;115(1-2):122-131. https://doi.org/10.1016/j.enggeo.2010.05.011.

28. Wang H., Gao J.E., Zhang M., Li X., Zhang S., Jia L.Z. Effects of rainfall intensity on groundwater recharge based on simulated rainfall experiments and a groundwater flow model. Catena. 2015;127:80-91. https://doi.org/10.1016/j.ca-tena.2014.12.014.

29. Seleshi Y., Zanke U. Recent changes in rainfall and rainy days in Ethiopia. International Journal of Climatology. 2004; 24(8):973-983. https://doi.org/10.1002/joc.1052.

30. Wu W.-Y., Lo M.-H., Wada Y., Famiglietti J.S., Reager J.T., Yeh P.J.-F., et al. Divergent effects of climate change on future groundwater availability in key mid-latitude aquifers. Nature Communications. 2020;11(1):3710. https://doi.org/10.1038/s41467-020-17581-y.

31. Shaikh A.A., Pathan A.I., Waikhom S.I., Rathod P. Comparison of watershed delineation and drainage network us ing ASTER and CARTOSAT DEM of Surat City, Gujarat. In: Intelligent Computing & Optimization. ICO 2021. Lecture Notes in Networks and Systems. Cham: Springer; 2022, vol. 371, p. 788-800. https://doi.org/10.1007/978-3-030-93247-3_75.


Рецензия

Для цитирования:


Йоше А., Аузина Л.И. Анализ условий формирования и распределения ресурсов природных вод на территории Центральной Эфиопии. Науки о Земле и недропользование. 2025;48(1):65-76. https://doi.org/10.21285/2686-9993-2025-48-1-65-76. EDN: VQFHHZ

For citation:


Yoshe A.K., Auzina L.I. Analysis of natural water resources formation and distribution conditions in Central Ethiopia. Earth sciences and subsoil use. 2025;48(1):65-76. https://doi.org/10.21285/2686-9993-2025-48-1-65-76. EDN: VQFHHZ

Просмотров: 265


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2686-9993 (Print)
ISSN 2686-7931 (Online)