Identification of Côte d’Ivoire basin turbidite reservoirs and their characteristics prediction based on 3D seismic survey
https://doi.org/10.21285/2686-9993-2025-48-1-88-100
EDN: JEDUPM
Abstract
The Gulf of Guinea, and in particular the sedimentary basin of Côte d’Ivoire, has recently been the subject of intensive geological exploration and major discoveries of hydrocarbon deposits. The basin is located in the northern part of the Gulf of Guinea, with the water depth of over 3,000 m. The basin has ideal conditions for hydrocarbon system forma tion. The study deals with the RUS-CIV block with the area of 2,600 km2, whereas 1,545 km2 of which has been subjected to 3D seismic surveying. The purpose of the work is qualitative assessment of turbidite reservoir properties in the Upper Cretaceous strata. The available seismic dataset is presented as a three-dimensional seismic cube with prestack time migration data and reprocessed prestack deep migration data covering the main research area. The study uses Kingdom SMT software and attribute maps that best match the channel detection (relative acoustic impedance and the second derivative of its envelope). The shale indicator attribute map enabled estimation of the clay content in the channels. The work demonstrates the efficiency of seismic attribute analysis to optimize prediction and description of hydrocarbon deposit characteristics. The interpretation of geological events at this stage is qualitative. As a result, it is recommended to pay attention to the areas identified through the scatter plot analysis and to deepen the preliminary stage of analysis by conducting a quantitative study.
About the Authors
D. L. A. OnamounRussian Federation
Désiré Lucien Ayémoun Onamoun, Postgraduate Student, Siberian School of Geosciences
Irkutsk
Competing Interests:
The authors declare no conflict of interests.
A. G. Dmitriev
Russian Federation
Alexander G. Dmitriev, Dr. Sci. (Geol. & Mineral.), Professor, Consulting Professor of the Geophysics Department, Siberian School of Geosciences
Irkutsk
Competing Interests:
The authors declare no conflict of interests.
References
1. Sandwell D.T., Müller R.D., Smith W.H.F., Garcia E., Francis R. New global marine gravity model from CryoSat-2 and Jason-1 reveals buried tectonic structure. Science. 2024;346(6205):65-67. https://doi.org/10.1126/science.1258213.
2. Burrell A. Understanding tectonic development and the implications for prospectivity offshore Côte d’Ivoire and Ghana. First Break. 2024;42(5):53-58. https://doi.org/10.3997/1365-2397.fb2024039.
3. Onamoun D.L.A., Dmitriev A.G. Results of 3D seismic surveying for hydrocarbons in the Gulf of Guinea. Earth sciences and subsoil use. 2024;47(4):430-441. (In Russ.). https://doi.org/10.21285/2686-9993-2024-47-4-430-441. EDN: TTLTBO. 4. Brownfield M.E., Charpentier R.R. Geology and total petroleum systems of the Gulf of Guinea province of West Africa: U.S. Geological Survey Bulletin 2207-C. Reston: U.S. Geological Survey; 2006, 32 p.
4. Antobreh A.A., Faleide J.I., Tsikala F., Planke S. Rift-shear architecture and tectonic development of the Ghana margin deduced from multichannel seismic reflection and potential field data. Marine and Petroleum Geology. 2009;26(3):345-368. https://doi.org/10.1016/j.marpetgeo.2008.04.005.
5. Burrell A., Polyaeva E., Sie G., Essoh S. Go west: deepwater prospectivity in the Côte d’Ivoire basin. GEO ExPro. 2022;5:34-36. Available from: https://www.tgs.com/hubfs/Technical%20Library/Technical%20Library%20Files/geoexpro_burrell_et_al_sept_cdi.pdf [Accessed 30th January 2025].
6. Macgregor D., Robinson J., Spear G. Play fairways of the Gulf of Guinea transform margin. Geological Society, London, Special Publications. 2013;207(1):131-150. https://doi.org/10.1144/GSL.SP.2003.207.7.
7. Tissot B., Demaison P., Masson P., Delteil J.R., Conbaz A. Paleoenvironment and petroleum potential of Middle Cretaceous black shales in Atlantic Basins. AAPG Bulletin. 1980;64(12):2051-2063.
8. Appiah M.K., Danuor S.K., Bedu-Addo S., Bienibuor A.K. Turbidite dynamics and hydrocarbon reservoir formation in the Tano Basin: a coastal West African perspective. International Journal of Geosciences. 2024;15(2):137-161. https://doi.org/10.4236/ijg.2024.152010.
9. Roncoroni G., Forte E., Pipan M. Deep attributes: innovative LSTM-based seismic attributes. Geophysical Journal International. 2024;237(1):378-388. https://doi.org/10.1093/gji/ggae053.
10. Dewett D.T., Pigott J.D., Marfurt K.J. A review of seismic attribute taxonomies, discussion of their historical use, and the presentation of a seismic attribute communication framework using data analysis concepts. Interpretation. 2021;9(3):B39-B64. https://doi.org/10.1190/int-2020-0222.1.
11. Yousifa F.H., Aziza B.Q., Babana E.N. Oil reservoir detection using volume attributes in chiasurkh area, kurdistan region, Iraq. Science Journal of the University of Zakho. 2022;10(4):163-168. https://doi.org/10.25271/sjuoz.2022.10.4.962.
12. Bouma A.H., Normark W.R., Barnes N.E. COMFAN: Needs and initial results. In: Bouma A.H., Normark W.R., Barnes N.E. (eds). Submarine fans and related turbidite systems. New York: Springer-Verlag; 1985, p. 7-11.
13. Surachman L.M., Abdulraheem A., Al-Shuhail A., Sanlinn I.K. Acoustic impedance prediction based on extended seismic attributes using multilayer perceptron, random forest, and extra tree regressor algorithms. Journal of Petroleum Exploration and Production Technology. 2024;14(7):1-9. https://doi.org/10.1007/s13202-024-01795-7.
14. Bacon M., Simm R., Renshaw T. 3-D seismic interpretation. Cambridge: Cambridge University Press; 2003, 206 p.
15. Liner C.L. Elements of 3D seismology. Tulsa, Oklahoma: PennWell, 1999, 438 p.
16. Aguiar L.F., Freire A.F.M., Santos L.A., Dominguez A.C.F., Neves E.H.P., Silva C.G., et al. Analysis of seismic attributes to recognize bottom simulating reflectors in the Foz do Amazonas basin, Northern Brazil. In: 16th International Congress of the Brazilian Geophysical Society. 19–22 August 2019, Rio de Janeiro. Rio de Janeiro: Universidade Federal Fluminense; 2019. https://doi.org/10.22564/16cisbgf2019.039.
17. Hjulstrøm F. Transportation of detritus by moving water. In: Trask P.D. (ed.). Recent marine sediments. Tulsa: American Association of Petroleum Geologists; 1939, p. 5-31.
18. Sunday James A., Kenneth Olayinka O. Seismic attribute analysis and 3D model-based approach to reservoir characterization of “KO” field, Niger Delta. Iranian Journal of Oil & Gas Science and Technology. 2020;9(4):1-28. http://doi.org/10.22050/ijogst.2020.232984.1550.
19. Zaklyuchnov I.S., Putilov I.S., Seletkov I.A. Development a new method of seismic attributes and well data comparison for quantitative prediction of reservoir (Tanypskoe Oilfield). Journal of Geophysics. 2020;5:13-19. (In Russ.). EDN: BZLJBX.
20. Leng J., Yu Z., Wu C. Enhanced discrimination of seismic geological channels based on multi-trace variational mode decomposition. Applied Sciences. 2022;12(11):5416. https://doi.org/10.3390/app12115416.
Review
For citations:
Onamoun D., Dmitriev A.G. Identification of Côte d’Ivoire basin turbidite reservoirs and their characteristics prediction based on 3D seismic survey. Earth sciences and subsoil use. 2025;48(1):88-100. (In Russ.) https://doi.org/10.21285/2686-9993-2025-48-1-88-100. EDN: JEDUPM