Features of high-density transient electromagnetic sounding data inversion under oil and gas prospecting in the Nepa-Botuoba anteclise area
https://doi.org/10.21285/2686-9993-2022-45-2-137-151
Abstract
The data of near-field transient electromagnetic sounding, which are widely used for the purposes of oil and gas exploration within the Nepa-Botuoba anteclise, are typically interpreted in terms of quasi-horizontally-layered models of media. The purpose of this study is to develop an approach to the inversion of transient electromagnetic sounding curves obtained via high-density 3D observation networks. The study was based on mathematical modeling, whose results allowed to estimate the lateral spatial parameters of a non-stationary electromagnetic field as well as to understand the differences between the results of one-dimensional inversion of the transient electromagnetic sounding data and the true parameters of the target horizon. As a result, the characteristic of the electromagnetic field described by an exponential function and used in the lateral-constraint inversion of high-density electromagnetic sounding was obtained. The proposed approach was tested on the practical data within the site under investigation located on the slope of the Nepa-Botuobа anteclise. It is shown that the use of spatial discrepancy under TEM sounding data inversion makes it possible to obtain geoelectric models characterized by lateral consistency of section geoelectric parameters. The application of the spatial stacking-based approach in the inversion process allows to increase the solution stability of the inverse problem of the near-field TEM sounding data.
About the Authors
E. V. MurzinaRussian Federation
Ekaterina V. Murzina, Engineer of Oil and Gas Laboratory,
Institute of the Earth's Crust, Leading Geophysicist
Irkutsk
A. V. Pospeev
Russian Federation
Alexandr V. Pospeev, Dr. Sci. (Geol. & Mineral.), Professor, Leading Researcher
Irkutsk
I. K. Seminskiy
Russian Federation
Igor K. Seminskiy, Cand. Sci. (Geol. & Mineral.), Head of the Centre for Geological Hazard Integrated Monitoring, Leading Specialist in Electrical Exploration Technologies
Irkutsk
I. V. Buddo
Russian Federation
Igor V. Buddo, Cand. Sci. (Geol. & Mineral.), Head of the Integrated Geophysics Laboratory, Associate Professor of the Department of Applied Geology, Geophysics and Geoinformation Systems, Institute of Subsoil Use, Сhief Geophysicist
Irkutsk
D. B. Nemtseva
Russian Federation
Daria B. Nemtseva, Postgraduate, Geophysicist
Irkutsk
V. S. Emelianov
Russian Federation
Vyacheslav S. Emelianov, Leeding Software Development Specialist
Irkutsk
Y. A. Agafonov
Russian Federation
Yuri A. Agafonov Director
Irkutsk
References
1. Kozlov E. A. Models of environment in exploratory seismology. Tver: Izd-vo GERS; 2006. 479 p. (In Russ.).
2. Van'yan L. L. Fundamentals of electromagnetic sounding. Moscow: Nedra; 1965. 109 p. (In Russ.).
3. McNeill J. D. Application of transient electromagnetic techniques: technical note TN7. Missasagua: Geonics Limited; 1980. 17 р.
4. Zhdanov M. S. Geophysical electromagnetic theory and methods. Moscow: Nauchnyi mir; 2012. 680 p. (In Russ.).
5. Svetov B. S. Theory, methods and interpretation of low-frequency inductive electrical exploration materials. Moscow: Nedra, 1973; 254 p. (In Russ.).
6. Tikhonov A. N., Goncharskii A. V., Stepanov V. V., Yagola A. G. Numerical methods for solving ill-defined problems. Moscow: Nauka; 1990. 230 p. (In Russ.).
7. Oldenburg D. W., Li Y., Aki K., Richards P. G., Alumbaugh D., Newman G., et al. Inversion for applied geophysics: a tutorial. In: Butler D. K. (ed.). Near-surface geophysics. Tulsa: Society of Exploration Geophysicists; 2005, р. 89–150.
8. Trigubovich G. M., Persova M. G., Soloveichik Yu. G. 3D TEM sounding. Novosibirsk: Nauka; 2009. 217 p. (In Russ.).
9. Pankratov V. M., Turitsyn K. S. Geoelectrical models of the Nepa arch horizontally layered section. In: Obespechenie nauchno-tekhnicheskogo progressa prigeofizicheskikh issledovaniyakh v Vostochnoi Sibiri = Providing scientific and technological progress in geophysical research in Eastern Siberia. Irkutsk – Novosibirsk: Siberian Research Institute of Geology, Geophysics and Mineral Raw Materials; 1987, p. 131–135. (In Russ.).
10. Pospeev A. V., Buddo I. V., Agafonov Yu. A., Sharlov M. V., Kompaniets S. V., Tokareva O. V., et al. Modern practical electrical exploration. Novosibirsk: Geo; 2018. 231 p. (In Russ.).
11. Seminskiy I. K., Pospeev A. V., Guseinov R. G. Optimization of TEM sounding by mathematical modeling. Irkutsk: Irkutsk State University; 2019. 129 p. (In Russ.).
12. Auken E., Christiansen A. V. Layered and laterally constrained 2D inversion of resistivity data. Geophysics. 2004;69(3):752-761. https://doi.org/10.1190/1.1759461.
13. Santos F. A. M. 1-D laterally constrained inversion of EM34 profiling data. Journal of Applied Geophysics. 2004;56(2):123-134. https://doi.org/10.1016/j.jappgeo.2004.04.005.
14. Wisén R., Auken E., Dahlin T. Combination of ID laterally constrained inversion and 2D smooth inversion of resistivity data with a priori data from boreholes. Near Surface Geophysics. 2005;3(2):71-79. https://doi.org/10.3997/1873-0604.2005002.
15. Kontorovich A. E., Mel'nikov N. V., Starosel'tsev V. S. Oil and gas provinces and areas of the Siberian platform. In: Geologiya i neftegazonosnost' Sibirskoi platformy = Geology and oil and gas potential of the Siberian platform. Novosibirsk: Siberian Research Institute of Geology, Geophysics and Mineral Raw Materials; 1975, p. 4–21. (In Russ.).
16. Tabarovskiy L. A., Epov M. I., Antonov E. Yu. Electromagnetic field in media with slightly non-horizontal boundaries. Novosibirsk: Institute of Geology and Geophysics of the Siberian Branch of the USSR Academy of Sciences; 1988. 20 p. (In Russ.).
17. Sharlov M. V., Agafonov Yu. A., Stefanenko S. M. SGS-TEM and FastSnap modern telemetric electrical exploration stations. Efficiency and application experience. Pribory i sistemy razvedochnoi geofiziki. 2010;1:20-24. (In Russ.).
18. Persova M. G., Soloveichik Y. G., Trigubovigh G. M. Computer modeling of geoelectromagnetic fields in three-dimensional media by the finite element method. Fizika Zemli. 2011;2:3-14. (In Russ.).
19. Emelianov V. S., Surov L. V., Sharlov M. V., Agafonov Yu. A. Model 4 as a modern software tool for TEM data 1D inversion and modeling. In: Primenenie sovremennykh elektrorazvedochnykh tekhnologii pri poiskakh mestorozhdenii poleznykh iskopaemykh: XIII Mezhdunar. nauch.-prakt. seminar = Application of modern electrical exploration technologies in the search for mineral deposits: 13th International scientific and practical seminar. Saint Petersburg; 2016, p. 115–118. (In Russ.).
20. Agafonov Yu. A., Pospeev A. V., Surov L. V. Data interpretation system and main application directions of non-stationary electromagnetic sounding-based researched in the South of the Siberian platform. Pribory i sistemy razvedochnoi geofiziki. 2006;1:33-36. (In Russ.).
Review
For citations:
Murzina E.V., Pospeev A.V., Seminskiy I.K., Buddo I.V., Nemtseva D.B., Emelianov V.S., Agafonov Y.A. Features of high-density transient electromagnetic sounding data inversion under oil and gas prospecting in the Nepa-Botuoba anteclise area. Earth sciences and subsoil use. 2022;45(2):137-151. (In Russ.) https://doi.org/10.21285/2686-9993-2022-45-2-137-151