Sulfide mineralization in orogenic eclogites of the North Muya block (northeastern Transbaikalia): genesis and the first data on the isotopic composition of sulfur
https://doi.org/10.21285/2686-9993-2024-47-1-35-43
EDN: JECNPC
Abstract
Subduction processes are accompanied by the sites of hydrothermal activity including large deposits of gold and transitional metals of island-arc or back-arc origin, whereas volcanic arcs host most part of the worldwide resources of metallic minerals. However, the role of suprasubduction metal transfer and the associated role of redox processes in their formation are still ambiguous and require direct studies of sulfide mineralization in high-pressure rocks, as well as their formation stages and sulfide preservation during progressive and peak metamorphism. In order to describe the behavior of chalcophile elements in the paleozones of continental subduction we performed preliminary mineralogical (SEM-EDX) and isotope (S) studies of sulfides in the North Muya block eclogites (northeastern Transbaikalia). Sulfide mineralization of pyrite-chalcopyrite-pyrrhotite composition has a metasomatic origin associated with the retrograde fluid transformation of initially “dry” eclogite assemblages during exhumation to lower- or mid-crust levels after or synchronously to the decompression and formation of plagioclase-diopside±amphibole symplectites (below 10-12 kbar). Extremely heterogeneous isotopic composition of pyrite sulfur (δ34SVCDT) was caused by various sources of fluids of presumably metasedimentary origin (from -8.2 to -6 %) in the paragneiss segments of the North Muya block. But they also could be predominantly buffered by hydrothermally altered metabasites (from +0.7 to +7.1 %). An alternative mechanism could be the participation of a single predominantly oxidized (sulfate-containing) fluid with the significant isotopic fractionation (up to ~15–20 %).
Keywords
About the Authors
S. Yu. SkuzovatovRussian Federation
Sergei Yu. Skuzovatov, Cand. Sci. (Geol. & Mineral.), Deputy Director for Research, Senior Researcher
Laboratory of Isotope Geochemistry
Irkutsk
Yu. I. Tarasova
Russian Federation
Yulia I. Tarasova, Cand. Sci. (Geol. & Mineral.), Senior Researcher
Laboratory of Geochemistry of Ore Formation and Geochemical Prospecting Methods; Ore Geology Department
Irkutsk
References
1. Bebout G.E. The impact of subduction‐zone metamorphism on mantle‐ocean chemical cycling. Chemical Geology. 1995;126(2):191-218. doi: 10.1016/0009-2541(95)00118-5.
2. Cooke D.R., Simmons S.F. Characteristics and genesis of epithermal gold deposits. Society of Economic Geologists. 2000;13:221-244. doi: 10.5382/Rev.13.06.
3. Sillitoe R.H. Major gold deposits and belts of the North and South American Cordillera: distribution, tectonomagmatic settings, and metallogenic considerations. Economic Geology. 2008;103(4):663-687. doi: 10.2113/gsecongeo.103.4.663.
4. Brown J.L., Christy A.G., Ellis D.J., Arculus R.J. Prograde sulfide metamorphism in blueschist and eclogite, New Caledonia. Journal of Petrology. 2014;55(3):643-670. doi: 10.1093/petrology/egu002.
5. Crossley R.J., Evans K.A., Jeon H., Kilburn, M.R. Insights into sulfur cycling in subduction zones from in‐situ isotope analysis of sulphides in high‐pressure serpentinites and ‘hybrid’ samples from Alpine Corsica. Chemical Geology. 2018;493:359-378. doi: 10.1016/j.chemgeo.2018.06.014.
6. Evans K.A., Tomkins A.G., Cliff J., Fiorentini M.L. Insights into subduction zone sulfur recycling from isotopic analysis of eclogite‐hosted sulfides. Chemical Geology. 2014;365:1-19. doi: 10.1016/j.chemgeo.2013.11.026.
7. Li J.-L., Klemd R., Huang G.-F., Ague J.J., Gao J. Unravelling slab δ34S compositions from in-situ sulphide δ34S studies of high-pressure metamorphic rocks. International Geology Review. 2021;63(1):109-129. doi: 10.1080/00206814.2020.1827305.
8. Li J.L., Schwarzenbach E.M., John T., Ague J.J., Huang F., Gao J., et. al. Uncovering and quantifying the subduction zone sulfur cycle from the slab perspective. Nature Communications. 2020;11:514. doi: 10.1038/s41467-019-14110-4.
9. Walters J.B., Cruz-Uribe A.M., Marschall H.R. Isotopic compositions of sulfides in exhumed high‐pressure terranes: implications for sulfur cycling in subduction zones. Geochemistry Geophysics Geosystems. 2019;20. doi: 10.1029/2019GC008374.
10. Walters J.B., Cruz-Uribe A.M., Marschall H.R., Boucher B. The role of sulfides in the chalcophile and siderophile element budget of the subducted oceanic crust. Geochimica et Cosmochimica Acta. 2021;304:191:215. doi: 10.1016/j.gca.2021.04.016.
11. Skuzovatov S.Yu., Shatsky V.S., Wang K.-L. Continental subduction during arc-microcontinent collision in the southern Siberian craton: constraints on protoliths and metamorphic evolution of the North Muya complex eclogites (Eastern Siberia). Lithos. 2019;342-343:76-96. doi: 10.1016/j.lithos.2019.05.022.
12. Skuzovatov S.Yu. Differential fluid activity in a single exhumed continental subduction unit from local P-T-M(H<sub>2</sub>O) records of zoned amphiboles (North Muya, Eastern Siberia). Minerals. 2022;12(2):217. doi: 10.3390/min12020217.
13. Skuzovatov S.Yu., Belozerova O.Yu., Vasil’eva I.E., Zarubina O.V., Kaneva E.V., Sokolnikova Yu.V., et. al. Centre of isotopic and geochemical research (IGC SB RAS): current state of micro- and macroanalysis. Geodinamika i tektonofizika = Geodynamics & Tectonophysics. 2022;13(2):585. (In Russ.). doi: 10.5800/GT-2022-13-2-0585. EDN: JWAGUK.
14. Craig J.R., Vokes F.M. The metamorphism of pyrite and pyritic ores: an overview. Mineralogical Magazine. 1993;57:3-18. doi: 10.1180/minmag.1993.057.386.02.
15. Acken D.V., Su W., Gao J., Creaser R.A. Preservation of Re-Os isotope signatures in pyrite throughout low-T, high-P eclogite facies metamorphism. Terra Nova. 2014;26:402-407. doi: 10.1111/ter.12113.
16. Hill R.E.T. Experimental study of phase relation at 600C in a portion of the Fe-Ni-Cu-S system and its application to natural sulphide assemblages. In: Buchanan D.L., Jones M.J. (eds). Sulphide deposits in mafic and ultramafic rocks. London: The Institution of Mining and Metallurgy; 1984, p. 14-21.
17. Connolly J.A.D., Cesare B. C-O-H-S fluid composition and oxygen fugacity in graphitic metapelites. Journal of Metamorphic Geology. 1993;11:379-388. doi: 10.1111/j.1525-1314.1993.tb00155.x.
18. Tomkins A.G. Windows of metamorphic sulfur liberation in the crust: implications for gold deposit genesis. Geochimica et Cosmochimica Acta. 2010;74:3246-3259. doi: 10.1016/j.gca.2010.03.003.
19. Tomkins A.G., Evans K.A. Separate zones of sulfate and sulfide release from subducted mafic oceanic crust. Earth and Planetary Science Letters. 2015;428:73-83. doi: 10.1016/j.epsl.2015.07.028.
Review
For citations:
Skuzovatov S.Yu., Tarasova Yu.I. Sulfide mineralization in orogenic eclogites of the North Muya block (northeastern Transbaikalia): genesis and the first data on the isotopic composition of sulfur. Earth sciences and subsoil use. 2024;47(1):35-43. (In Russ.) https://doi.org/10.21285/2686-9993-2024-47-1-35-43. EDN: JECNPC