Preview

Earth sciences and subsoil use

Advanced search

Comprehensive crystal chemical analysis as a stage of mineralogical and technological assessment of solid mineral ores

https://doi.org/10.21285/2686-9993-2025-48-3-296-309

EDN: QDHESY

Abstract

The purpose of this article is to substantiate the importance of comprehensive crystal chemical analysis in the mineralogical and technological assessment of solid mineral ores. On example of rare silicate minerals (tinaksite, tokkoite, potassium-hastingsite, and others) selected from the deposits of various genetic types the effectiveness of the integration of modern analytical methods including X-ray structural analysis, electron probe microanalysis, Mössbauer, infrared and Raman spectroscopy, electron paramagnetic resonance, as well as optical spectroscopy and luminescence was demonstrated. The study obtained quantitative data on cation distribution by structural positions, iron valence state spectra features associated with OH vibrations, and luminescent characteristics. The identified quantitative “composition-structure-properties” correlations enabled the solution of such fundamental tasks as determining crystal chemical formulas and mechanisms of isomorphic substitutions, studying ion exchange and redox processes, reconstructing mineral formation conditions, and analyzing the nature of functional properties. The obtained results provided a basis for predicting the technological behavior of mineral raw materials and developing genetic criteria. Among other things, it has been convincingly demonstrated that the comprehensive approach to assessing solid mineral ores enables a transition from empirical description to predictive modeling making a significant contribution to both the development of fundamental mineralogy and the solution of applied problems in rational subsoil use. The established patterns and developed methodological principles open up new prospects for the creation of energy-efficient and environmentally friendly technologies for processing mineral raw materials with the targeted use of their functional properties.

About the Author

E. V. Kaneva
A.P. Vinogradov Institute of Geochemistry of the Siberian Branch of the Russian Academy of Sciences
Russian Federation

Ekaterina V. Kaneva, Dr. Sci. (Geol. & Mineral.), Senior Researcher of the Laboratory of X-ray Analysis Methods, Professor at the Graduate and Postgraduate Department

Irkutsk


Competing Interests:

The author declares no conflicts of interests.



References

1. Liebau F. Structural chemistry of silicates: structure, bonding, and classification. Heidelberg: Springer; 2012, 354 p. http://doi.org/10.1007/978-3-642-50076-3.

2. Rogov Y.G., Rogova V.P., Voronkov A.A., Moleva V.A. Tinaksite, NaK<sub>2</sub>Ca<sub>2</sub>TiSi<sub>7</sub>O<sub>19</sub>(OH), a new mineral. Doklady Academii Nauk SSSR. 1965;162:658-661. (In Russ.).

3. Lazebnik K.A., Nikishova L.V., Lazebnik Y.D. Tokkoite, a new mineral of charoitites. Mineralogicheskii zhurnal. 1986;8:85-89. (In Russ.).

4. Lacalamita M., Mesto E., Scordari F., Schingaro E., Kaneva E., Vladykin N., et al. Structure refinement and crystal chemistry of tokkoite and tinaksite from the Murun massif (Russia). Mineralogical Magazine. 2017;81(2):251-272. https://doi.org/10.1180/minmag.2016.080.094. https://doi.org/10.1180/minmag.2016.080.135. EDN: BTXUHW.

5. Dyar M.D., Sklute E.C., Agresti D.G., Schaefer M.W., Grant C.A. Mössbauer spectroscopy of earth and planetary materials. Annual Review of Earth and Planetary Sciences. 2006;34:83-125. https://doi.org/10.1146/annurev.earth.34.031405.125049. EDN: MJCQKP.

6. Lacalamita M., Schingaro E., Scordari F., Ventruti G., Fabbrizio A., Pedrazzi G. Substitution mechanisms and implications for the estimate of water fugacity for Ti-rich phlogopite from Mt. Vulture, Potenza, Italy. American Mineralogist. 2011;96(8-9):1381-1391. https://doi.org/10.2138/am.2011.3772. EDN: PQUXGJ.

7. Lacalamita M., Mesto E., Scordari F. Schingaro E. Chemical and structural study of 1M- and 2M<sub>1</sub>-phlogopites coexisting in the same Kasenyi kamafugitic rock (SW Uganda). Physics and Chemistry of Minerals. 2012;39(8):601-611. https://doi.org/10.1007/s00269-012-0515-y. EDN: PQUXGJ.

8. Schingaro E., Lacalamita M., Mesto E., Scordari F., Kullerud K., Ravna E.J.K., et al. Yangzhumingite and phlogopite from the Kvaløya lamproite (North Norway): Structure, composition and origin. Lithos. 2014;210:1-13. https://doi.org/10.1016/j.lithos.2014.09.020. EDN: UFCJAD.

9. Kaneva E., Shendrik R. Tinaksite and tokkoite: X-ray powder diffraction, optical and vibrational properties. Crystals. 2022;12(3):377. https://doi.org/10.3390/cryst12030377. EDN: HUROCM.

10. Rozhdestvenskaya I.V., Nikishova L.V. Crystallochemical features of alkali calcium silicates from charoitites I. Finite projective planes and the special clusters of diamond-like structures determined by them. Kristallografiya. 2002;47(4):602-611. (In Russ.).

11. Zhou Q., Wang Z., Wu M., Dolgov L., Zhou L., Shi J., et al. Mn<sup>2+</sup> and Mn<sup>4+</sup> red phosphors: Synthesis, luminescence and applications in WLEDs. A review. Journal of Materials Chemistry C. 2018;6(11):2652-2671. https://doi.org/10.1039/C8TC00251G. EDN: VGBYDY.

12. Yarovoy P.N. Laser-induced luminescence identification of materials. Irkutsk: Irkutsk State Technical University; 1996, 176 p.

13. Rogers E.G., Dorenbos P. Vacuum energy referred Ti<sup>3+/4+</sup> donor/acceptor states in insulating and semiconducting inorganic compounds. Journal of Luminescence. 2014;153:40-45. https://doi.org/10.1016/j.jlumin.2014.03.002. EDN: SRVYUT.

14. Naik R., Prashantha S.C., Nagabhushana H., Girish K.M. Electrochemical, photoluminescence and EPR studies of Fe<sup>3+</sup> doped nano Forsterite: Effect of doping on tetra and octahedral sites. Journal of Luminescence. 2018:197(5):233-241. https://doi.org/10.1016/j.jlumin.2018.01.051.

15. Oberti R., Boiocchi M., Zema M. Thermoelasticity, cation exchange, and deprotonation in Fe-rich holmquistite: Toward a crystal-chemical model for the high-temperature behavior of orthorhombic amphiboles. American Mineralogist. 2019;104(12):1829-1839. https://doi.org/10.2138/am-2019-6966.

16. Oberti R., Boiocchi M., Zema M., Hawthorne F.C., Redhammer G.J., Susta U., et al. The high-temperature behavior of riebeckite: expansivity, deprotonation, selective Fe oxidation and a novel cation disordering scheme for amphiboles. European Journal of Mineralogy. 2018;30(3):437-449. https://doi.org/10.1127/ejm/2018/0030-2712. EDN: VHCYAK.

17. Della Ventura G., Mihailova B., Susta U., Cestelli Guidi M., Marcelli A., Schlüter J., et al. The dynamics of Fe oxidation in riebeckite: A model for amphiboles. American Mineralogist. 2018;103(7):1103-1111. https://doi.org/10.2138/am-2018-6382.

18. Oberti R., Boiocchi M., Zema M., Della Ventura G. Synthetic potassic-ferro-richterite: 1. Composition, crystal structure refinement, and HT behavior by in operando single-crystal X-ray diffraction. The Canadian Mineralogist. 2016;54(1):353-369. https://doi.org/10.3749/canmin.1500073.

19. Della Ventura G., Susta U., Bellatreccia F., Marcelli A., Redhammer G.J., Oberti R. Deprotonation of Fe-dominant amphiboles: Single-crystal HT-FTIR spectroscopic studies of synthetic potassic-ferro-richterite. American Mineralogist. 2017;102(1):117-125. https://doi.org/10.2138/am-2017-5859.

20. Kaneva E., Radomskaya T., Shendrik R., Chubarov V., Danilovsky V. Potassic-hastingsite from the Kedrovy district (East Siberia, Russia): petrographic description, crystal chemistry, spectroscopy, and thermal behavior. Minerals. 2021;11(10):1049. https://doi.org/10.3390/min11101049. EDN: VECKYE.

21. Burns R.G. Mineralogical application of crystal field theory. Cambridge: Cambridge University Press; 1993, 557 p.

22. Goldman D.S., Rossman G.R., Dollase W.A. Channel constituents in cordierite. American Mineralogist. 1977;62(11-12):1144-1157.

23. Taran M.N., Langer K. Electronic absorption spectra of Fe<sup>2+</sup> ions in oxygen-based rock-forming minerals at temperatures between 297 and 600 K. Physics and Chemistry of Minerals. 2001;28(3):199-210. https://doi.org/10.1007/s002690000148. EDN: XJMZWX.

24. Fontana I., Lauria A., Spinolo G. Optical absorption spectra of Fe<sup>2+</sup> and Fe<sup>3+</sup> in aqueous solutions and hydrated crystals. Physica Status Solidi (B): Basic Solid State Physics. 2007;244(12):4669-4677. https://doi.org/10.1002/pssb.200743103.

25. Abragam A., Bleaney B. Electron paramagnetic resonance of transition ions. Oxford: Oxford University Press, 2012. 928 p.

26. Skogby H., Rossman G.R. OH<sup>–</sup> in pyroxene; an experimental study of incorporation mechanisms and stability. American Mineralogist. 1989;74:1059-1069.

27. Burt D.M. Metasomatic zoning in Ca-Fe-Si exoskarns. In: Hofmann A.W., Giletti B.J., Yoder Jr. H.S., Yund R.A. (eds). Geochemical Transport and Kinetics. Washington: Carnegie Institution of Washington; 1974, vol. 634, p. 287-293.

28. Pertsev N.N. Skarns as magmatic and as postmagmatic formations. International Geology Review. 1974;16(5):572-582. https://doi.org/10.1080/00206817409471840.

29. Burt D.M. Mineralogy and petrology of skarn deposits. Rendiconti – societa Italiana di Mineralogia e Petrologia. 1977;33(2):859-873.

30. Meinert L.D., Dipple G.M., Nicolescu S. World skarn deposits. In: Hedenquist J.W., Thompson J.F.H., Goldfarb R.J., Richards J.P. (eds). Economic Geology. 100 th Anniversary Volume 1905–2005: Chapter: Wolrd Skarn Deposits. Amsterdam: Elsevier Science B.V.; 2005, p. 299-336. https://doi.org/10.5382/AV100.11.

31. Einaudi M.T., Burt D.M. Introduction – terminology, classification, and composition of skarn deposits. Economic Geology. 1982;77(4):745-754. https://doi.org/10.2113/gsecongeo.77.4.745.

32. Meinert L.D. Skarns and skarn deposits. Geoscience Canada. 1992;19(4):145-162.

33. Alaminia Z., Mehrabi B., Razavi S.M.H., Tecce F. Mineral chemistry, petrogenesis and evolution of the Ghorveh-Seranjic skarn, Northern Sanandaj Sirjan Zone, Iran. Mineralogy and Petrology. 2020;114(1):15-38. https://doi.org/10.1007/s00710-019-00688-6. EDN: NUVCKL.

34. Kaneva E.V., Shendrik R.Yu., Radomskaya T.A., Suvorova L.F. Fedorite from Murun alkaline complex (Russia): spectroscopy and crystal chemical features // Minerals. 2020;10(8):1-23. https://doi.org/10.3390/min10080702. EDN: XSHQEQ.

35. Mitchell R.H., Burns P.C. The structure of fedorite: a re-appraisal. The Canadian Mineralogist. 2001;39(3):769-777. https://doi.org/10.2113/gscanmin.39.3.769.

36. Yarovoy P.N., Badenikov V.Ya. Luminescence and interaction of laser irradiation with dielectrics. Angarsk: Angarsk State Technical Academy; 2004, 275 p. (In Russ.).

37. Hasegawa T., Nishiwaki Y., Fujishiro F., Kamei S., Ueda T. Quantitative determination of the effective Mn<sup>4+</sup> concentration in a Li<sub>2</sub>TiO<sub>3</sub>:Mn<sup>4+</sup> phosphor and its effect on the photoluminescence efficiency of deep red emission. ACS Omega. 2019;4(22):19856-19862. https://doi.org/10.1021/acsomega.9b02798.

38. Khaidukov N.M., Brekhovskikh M.N., Kirikova N.Y., Kondratyuk V.A., Makhov V.N. Luminescence of MgAl<sub>2</sub>O<sub>4</sub> and ZnAl<sub>2</sub>O<sub>4</sub> spinel ceramics containing some 3d ions. Ceramics International. 2020;46(13):21351-21359. https://doi.org/10.1016/j.ceramint.2020.05.231. EDN: XPDYGM.

39. Zhang Y., Liu Y., Yang L., Hu S., Wang Z., Nian H., et al. Preparation and luminescence properties of thermally stable Mn<sup>4+</sup> doped spinel red-emitted ceramic phosphors. Journal of Luminescence. 2020;220:117016. https://doi.org/10.1016/j.jlumin.2019.117016. EDN: SCTSCH.

40. Tanabe Y., Sugano S. On the absorption spectra of complex ions II. Journal of the Physical Society of Japan. 1954;9(5):766-779. https://doi.org/10.1143/JPSJ.9.766.

41. Lacalamita M., Mesto E., Kaneva E., Shendrik R., Radomskaya T., Schingaro E. High-temperature behaviour of fedorite, Na<sub>2.5</sub>(Ca<sub>4.5</sub>Na<sub>2.5</sub>)[Si<sub>16</sub>O<sub>38</sub>]F<sub>2</sub>∙2.8H<sub>2</sub>O, from the Murun Alkaline Complex, Russia // Mineralogical Magazine. 2023;87(4):542-553. https://doi.org/10.1180/mgm.2023.31. EDN: DCAVOS.

42. Vladykin N.V., Borokovikov A.A., Dokuchits E.Yu., Thomas V.G. Genesis of charoite rocks in the Murun Massif, Aldan Shield, Russia. Geochemistry International. 2018;56(12):1135-1147. https://doi.org/10.1134/S0016702918120108. EDN: QWEMQR.

43. Borovikov A.A., Tretiakova I.G., Vladykin N.V., Dokuchits E.Y. Physicochemical conditions of formation of hydrothermal titanium mineralization on the Murunskiy alkaline massif, western Aldan (Russia). Ore Geology Reviews. 2018;95:1066-1075. https://doi.org/10.1016/j.oregeorev.2017.11.007. EDN: XXRPML.

44. Bonaccorsi E., Ballirano P., Cámara, F. The crystal structure of sacrofanite, the 74 Å phase of the cancrinite-sodalite supergroup. Microporous and Mesoporous Materials. 2012;147(1):318-326. https://doi.org/10.1016/j.micromeso.2011.06.033. EDN: PHALXD.

45. Sapozhnikov A.N., Kaneva E.V., Suvorova L.F., Levitsky V.I., Ivanova L.A. Sulfhydrylbystrite, Na<sub>5</sub>K<sub>2</sub>Ca(Al<sub>6</sub>Si<sub>6</sub>O<sub>24</sub>)(S<sub>5</sub>)(SH), a new mineral with the LOS framework, and re-interpretation of bystrite: cancrinite-group minerals with novel extra-framework anions. Mineralogical Magazine. 2017;81(2):383-402. https://doi.org/10.1180/minmag.2016.080.106. EDN: BMRHBP.

46. McCusker L.B., Liebau F., Engelhardt G. Nomenclature of structural and compositional characteristics of ordered microporous and mesoporous materials with inorganic hosts (IUPAC Reccomendations 2001). Microporous and Mesoporous Materials. 2003;58(1):3-13. https://doi.org/10.1016/S1387-1811(02)00545-0. EDN: BFUXGT.

47. Chukanov N., Sapozhnikov A., Kaneva E., Varlamov D., Vigasina M. Bystrite, Na<sub>7</sub>Ca(Al<sub>6</sub>Si<sub>6</sub>O<sub>24</sub>)S<sub>5</sub><sup>2–</sup>Cl<sup>–</sup>: formula redefinition and relationships with other four-layer cancrinite-group minerals. Mineralogical Magazine. 2023;87(3):455-464. https://doi.org/10.1180/mgm.2023.29. EDN: FYFBCF.

48. Chukanov N.V., Shendrik R.Yu., Vigasina M.F., Pekov I.V., Sapozhnikov A.N., Shcherbakov I.D., et al. Crystal chemistry, isomorphism, and thermal conversions of extra-framework components in sodalite-group minerals. Minerals. 2022;12(7):887. https://doi.org/10.3390/min12070887. EDN: YTPUHN.

49. Chukanov N.V., Zubkova N.V., Pekov I.V., Vigasina M.F., Yapaskurt V.O., Pushcharovsky D.Yu., et al. Sapozhnikovite, Na<sub>8</sub>(Al<sub>6</sub>Si<sub>6</sub>O<sub>24</sub>)(HS)<sub>2</sub>, a new sodalite-group mineral from the Lovozero alkaline massif, Kola Peninsula. Mineralogical Magazine. 2022;86(1):49-59. https://doi.org/10.1180/mgm.2021.94. EDN: IQEYSQ.

50. Sapozhnikov A.N., Ivanov V.G., Piskunova L.F., Kashaev A.A., Terentieva L.E., Pobedimskaya E.A. Bystrite Ca(Na,K)<sub>7</sub>(Si<sub>6</sub>Al<sub>6</sub>O<sub>24</sub>)(S3)<sub>1.5</sub>·H<sub>2</sub>O, a new cancrinite-like mineral. Zapiski Vsesyuznogo Mineralogicheskogo Obshchestva. 1991;120(3):97-100 (In Russ.).

51. Della Ventura G., Gatta G.D., Redhammer G.J., Bellatreccia F., Loose A., Parodi G.C. Single-crystal polarized FTIR spectroscopy and neutron diffraction refinement of cancrinite. Physics and Chemistry of Minerals. 2009;36(4):193-206. https://doi.org/10.1007/s00269-008-0269-8. EDN: MMQRNT.

52. Pekov I.V., Olysych L.V., Chukanov N.V., Zubkova N.V., Pushcharovsky D.Yu., Van K.V., et al. Crystal chemistry of cancrinite-group minerals with an AB-type framework: a review and new data. I. Chemical and structural variations. The Canadian Mineralogist. 2011;49(5):1129-1150. https://doi.org/10.3749/canmin.49.5.1129. EDN: PEQOGJ.

53. Chukanov N.V., Pekov I.V., Olysych L.V., Zubkova N.V., Vigasina M.F. Crystal chemistry of cancrinite-group minerals with an AB-type framework: a review and new data. II. IR spectroscopy and its crystal-chemical implications. The Canadian Mineralogist. 2011;49(5):1151-1164. https://doi.org/10.3749/canmin.49.5.1151. EDN: PEQOCD.

54. Bonaccorsi E., Merlino S. Modular microporous minerals: cancrinite-davyne group and C–S–H phases. Reviews in Mineralogy and Geochemistry. 2005;57(1):241-290. https://doi.org/10.2138/RMG.2005.57.8. EDN: MJGPBV.

55. Shendrik R., Kaneva E., Radomskaya T., Sharygin I., Marfin A. Relationships between the structural, vibrational, and optical properties of microporous cancrinite // Crystals. 2021;11(3):280. https://doi.org/10.3390/cryst11030280. EDN: ZXTDGF.

56. Hossain F.M., Murch G.E., Belova I.V., Turner B.D. Electronic, optical and bonding properties of CaCO<sub>3</sub> calcite. Solid State Communications. 2009;149(29-30):1201-1203. https://doi.org/10.1016/j.ssc.2009.04.026.

57. Thøgersen J., Weidner T., Jensen F. The primary photolysis of aqueous carbonate di-anions. PCCP: Physical Chemistry Chemical Physics. 2023;25(20):14104-14116. http://doi.org/10.1039/d3cp00236e. EDN: KAMAOW.

58. Kaneva E., Radomskaya T., Shendrik R. Fluorcarletonite – a new blue gem material. The Journal of Gemmology. 2022;38(4):376-385. https://doi.org/10.15506/JoG.2022.38.4.376. EDN: YYZGYF.

59. Kaneva E., Bogdanov A., Radomskaya T., Belozerova O., Shendrik R. Crystal-chemical characterisation and spectroscopy of fluorcarletonite and carletonite. Mineralogical Magazine. 2023;87(3):356-368. https://doi.org/10.1180/mgm.2023.15. EDN: LEKMER.

60. Kaneva E., Shendrik R. Radiation defects and intrinsic luminescence of cancrinite. Journal of Luminescence. 2022;243:118628. https://doi.org/10.1016/j.jlumin.2021.118628.

61. Shendrik R., Chukanov N.V., Bogdanov A., Myasnikova A., Pankrushina E., Zolotarev A.A., et al. Nature of scapolite color: Ab initio calculations, spectroscopy, and structural study. Minerals. 2024;14(9):937. https://doi.org/10.3390/min14090937. EDN: DTCHYK.

62. Shendrik R., Kaneva E., Pankratova V., Pankrushina E., Radomskaya T., Gavrilenko V., et al. Intrinsic luminescence and radiation defects in scapolite. Chemical Physics Letters. 2024;838:141081. https://doi.org/10.1016/j.cplett.2024.141081. EDN: QHVYTF.


Review

For citations:


Kaneva E.V. Comprehensive crystal chemical analysis as a stage of mineralogical and technological assessment of solid mineral ores. Earth sciences and subsoil use. 2025;48(3):296-309. (In Russ.) https://doi.org/10.21285/2686-9993-2025-48-3-296-309. EDN: QDHESY

Views: 45


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2686-9993 (Print)
ISSN 2686-7931 (Online)