Preview

Earth sciences and subsoil use

Advanced search

New data on the geological and structural features of the Ozhereliye, Ykanskoye, Ugahan and Golets Vysochaishy gold fields

https://doi.org/10.21285/2686-9993-2019-42-4-388-412

Abstract

The article presents the comparison of the geological-mineralogical and geochemical parameters of the existing gold ore fields that are being developed by GV Gold, with the purpose to identify the gold mineralization distribution patterns for each field. To achieve the above goal, the following has been accomplished within the frames of the work. The deep drilling data have been studied and analyzed to reveal the geological-structural features of the fields; the ore mineralogical composition has been determined; new promising sites have been revealed (‘blind’ ore deposits not identified at the prospecting stage). A consolidated database for the factual data on all the fields has been created. The data has been processed by means of computer modeling and 3D-analysis (GIS packages Micromine and Leapfrog). Based on the analysis results, non-outcropping ore bodies have been defined. These ore bodies mainly occur in weakly metamorphized carbonaceous terrigenous and terrigenous-carbonate rocks, and are flat-dipping zones sub-consistent with ore-bearing rocks of gold-quartz-sulfide mineralization. The study has revealed that the Ugakhan field has a cascade structure complicated with dislocation faulting systems. As a result, new ore sites and potential ore-bearing blocks have been discovered. All the above has given a significant increase of the field’s mineral resource base (25% in terms of resources in gold equivalent). For the Golets Vysochaishy field, the ore zone has been expanded to east-south-east and north-west of the site. The study has confirmed the assumption of the presence of a gold ore site (more than 5 tons) within the Ugakhan formation carbonate rocks that the previous researchers considered unpromising in terms of precious metal mineralization.

About the Authors

V. N. Babyak
GV Gold; Vinogradov Institute of Geochemistry, SB RAS
Russian Federation

Resource Geologist;  Postgraduate, Laboratory of Ore Formation Geochemistry and Geochemical Prospecting Methods

14 Kadashevskaya Embankment, Moscow 119017, Russia

1a Favorsky St., Irkutsk 664033, Russia



A. V. Blinov
Vinogradov Institute of Geochemistry, SB RAS
Russian Federation

Junior Researcher, Laboratory of Ore Formation Geochemistry and Geochemical Prospecting Methods

1a Favorsky St., Irkutsk 664033, Russia



J. I. Tarasova
Vinogradov Institute of Geochemistry, SB RAS; Irkutsk Scientific Center, SB RAS
Russian Federation

Cand. Sci. (Geol. & Mineral.), Senior Researcher, Laboratory of Ore Formation Geochemistry and Geochemical Prospecting Methods; Researcher

1a Favorsky St., Irkutsk 664033, Russia

134 Lermontov St., Irkutsk 664033, Russia



A. E. Budyak
Vinogradov Institute of Geochemistry, SB RAS
Russian Federation

Cand. Sci. (Geol. & Mineral.), Deputy Director for Research

1a Favorsky St., Irkutsk 664033, Russia



References

1. Ivanov AI. Gold of Baikal-Patom (Geology, Mineralization, and Prospects). Moscow: Central Research Institute of Geological Prospecting for Basic and Precious Metals; 2014. 215 p. (In Russ.)

2. Nemerov VK, Razvozzhaeva EA, Budyak AE, Stanevich AM, Kornilova TA. Biogenic sedimentation factors of ore formation in the Neoproterozoic series of the Baikal-Patom area. Geologiya i geofizika. 2010;51(5):729–747. (In Russ.)

3. Chugaev AV, Chernyshev IV. Pb-Pb isotopic systematics of the orogenic gold fields of the Baikal-Patom fold belt (Northern Transbaikalia, Russia) and evaluation of the role of the Neoproterozoic crust in the fileds formation. Geokhimiya. 2017;11:1027–1040. (In Russ.)

4. Chugaev AV, Budyak AE, Chernyshev IV, Dubinina EO, Gareev BI, Shatagin KN, et al. Isotopic (Sm-Nd, Pb-Pb, and δ 34S) and geochemical characteristics of the meta-sedimentary rocks of the BaikalPatom belt (Northern Transbaikalia), and evolution of the sedimentary basin in the Neoproterozoc period. Petrologiya. 2018;26(3):213–244. (In Russ.)

5. Budyak AE, Parshin AV, Spiridonov AM, Reutsky VN, Damdinov BB, Volkova MG. et al. Geochemical peculiarities of formation of Au-U deposits of the “nonconcurrence” type (Northern Transbaikalia). Geokhimiya. 2017;2:149–160. (In Russ.)

6. Yudovskaya MA, Distler VV, Rodionov NV, Mokhov AV, Antonov AV, Sergeev SA. Correlation of the metamorphism and orogenic processes at the Sykhoy Log black-slate gold field (by the data of UTh-Pb isotopic SRIMP dating of the accessory minerals). Geologiya rudnykh mestorozhdenii. 2011;53(1):32–64. (In Russ.)

7. Yudovskaya MA, Distler VV, Prokofiev VYu, Akinfiev NN. Gold mineralisation and orogenic metamorphism in the Lena province of Siberia as assessed from Chertovo Koryto and Sukhoi Log deposits. Geoscience Frontiers. 2016;7:453–481.

8. Kuznetsov AB, Ovchinnikova GV, Gorokhov IM, Letnikova EF, Kaurova OK, Konstantinova GV. Age constraints on the Neoproterozoic Baikal Group from combined Sr isotopes and Pb–Pb dating of carbonates from the Baikal type section, southeastern Siberia. Journal of Asian Earth Sciences. 2013;62:51–66.

9. Chumakov NM, Kapitonov IN, Semikhatov MA, Leonov MV, Rud'ko SV. Vendian age of the Upper Patom complex of Middle Siberia: U-Pb La-ICPMS dating of clastic zircons of the Nilolskaya and Zherbinskaya suites. Stratigrafiya. Geologieskaya korrelyatsiya. 2011;19(2):115–119. (In Russ.)

10. Pokrovsky BG, Bujakaite MI. Geochemistry of C, O and Sr isotopes in the Neoproterozoic carbonates of the Patom paleobasin south-west, the south of Middle Siberia. Litologiya i poleznye iskopaemye. 2015;2:159–186. (In Russ.) https://doi.org/10.7868/S0024497X15010048

11. Powerman V, Shatsillo A, Chumakov N. Interaction between the Central Asian Orogenic Belt (CAOB) and the Siberian craton as recorded by detrital zircon suites from Transbaikalia. Precambrian Research. 2015;267(1):39–71. https://doi.org/10.1016/j.precamres.2015.05.015

12. Budyak AE, Bryukhanova NN. Selenium, bismuth and mercury of gold fields of different genetic types in black-slate formations. Geokhimiya. 2012;9:881–888. (In Russ.)

13. Budyak AE, Goryachev NA, Skuzovatov SY. Geological background to the formation of the large-scale mineralization of the southern margin of the Siberian craton in the Proterozoic period. Doklady Akademii nauk. 2016;470(5):562–565. (In Russ.)

14. Budyak AE, Skuzovatov SY, Tarasova YI, Kuo-Lung Wang, Goryachev NA. Common Neoproterozoic–Early Paleozoic Evolution of Ore-Bearing Sedimentary Complexes in the Southern Siberian Craton. Doklady Akademii nauk. 2019;484(3):335–339. (In Russ.)

15. Chernyshev IV, Chugaev AV, Safonov YG, Saroyan MR, Yudovskaya MA, Eremina AV. Isotopic composition of plumbum by the data of the highfidelity MC-ICP-MS method and the substance sources of the large-scale precious metal deposit (Sykhoi Log field, Russia). Geologiya rudnykh mestorozhdenii. 2009;51(6):550–559. (In Russ.)

16. Palenova EE, Belogub EV, Plotinskaya OY, Novoselov KA, Maslennikov VV, Kotlyarov VA, et al. Evolution of pyrite composition in the black-slate strata of the Kopylovskoye and Kavkaz gold fields (Bodaibo region, Russia) according to the EPМА and La-ICP-МС data. Geologiya rudnykh mestorozhdenii. 2015;57(1):71–92. (In Russ.) https://doi.org/10.7868/S0016777015010025

17. Gladkochub DP, Stanevich AM, Mazukabzov AM, Donskaya TV, Pisarevsky SA, Nicoll G, et al. Early evolution of the Paleoasian ocean: LA-ICP-MS dating of detrital zircon from Late Precambrian sequences of the southern margin of the Siberian craton. Geologiya i geofizika. 2013;54(10):1472–1490. (In Russ.)

18. Palenova EE, Yudovskaya MA, Frei D, Rodionov NV. Detrital zircon U–Pb ages of Paleo- to Neoproterozoic black shales of the Baikal-Patom Highlands in Siberia with implications to timing of metamorphism and gold mineralization // Journal of Asian Earth Sciences. 2019;174:37–58. https://doi.org/10.1016/j.jseaes.2018.10.022

19. Kazakevich YuP, Sher SD, Zhadnova TP, Storozhenko AA, Kondratenko AK, Nikolaeva LA, et al. Lensky gold-bearing region. In: Stratigrafiya, tektonika, magmatizm i proyavlenie korennoi zolotonosnosti: trudy Tsentral'nogo nauchno-issledovatel'skogo geologorazvedochnogo instituta tsvetnykh i blagorodnykh metallov = Stratigraphy, tectonics, magmatism and the manifestation of the bedrock’s gold bearing capacity: Proceedings of Central Research Geological Prospecting Institute of non-ferrous and precious metals. Iss. 85. Moscow: Nedra; 1971. 164 p. (In Russ.)

20. Zorin YuA, Mazukabzov AM, Gladkochub DP, Donskaya TV, Presnyakov SL, Sergeev SA. The major Silurian folded deformations of the Riphean sediments: Baikal-Patom zone. Doklady Akademii nauk. 2008;423(2):228–233. (In Russ.)

21. Bukharov AA, Khalilov VA, Strakhova TM, Chernikov VV. Geology of the Baikal-Patom upland by the new data on U-Pb dating of accessory zircon. Geologiya i geofizika. 1992;33(12):29–40. (In Russ.)

22. Laverov NP, Chernyshev IV, Chugaev AV, Bairova ED, Gol'tsman YV, Distler VV, et al. Stages of the large-scale precious metal mineralization at the Sykhoy Log field, Eastern Siberia: the results of the isotopic geochronological study. Doklady Akademii nauk. 2007;415(2):236–241. (In Russ.)

23. Tsygankov AA, Matukov DI, Berezhnaya NG, Larionov AN, Posokhov VF, Tsyrenov BTs, et al. Magma sources and the stages of the Late Paleozoic granitoids formation, Western Transbaikalia. Geologiya i geofizika. 2007;48(1):156–180. (In Russ.)

24. Tsygankov AA, Litvinovsky BA, Jahn BM, Reichow MK, Liu DY, Larionov AN, et al. Sequence of magmatic events in the Late Paleozoic of Transbaikalia, Russia (U-Pb isotope data). Geologiya i geofizika. 2010;51(9):1249–1276. (In Russ.)

25. Ivanov AI, Livshits VI, Perevalov OV, Strakhova TM, Yablonovskii BV. Precambrian of the Patom Highlands. Moscow: Nedra; 1995. 352 p. (In Russ.)

26. Varshall GM, Velyukhanova TK, Koshcheeva IYa, et al. On concentrating non-ferrous metals with the rocks’ carbonaceous substance. Geokhimiya. 1994;6:814–824. (In Russ.)

27. Vilor NV, Kazharskaya MG, Bychinskii VA, Kostyanetskaya ZhV, Men'shikov VI, Baranov VA. Geochemical correlations and the dynamics of the “solution-rock” relations in ore-bearing fluid systems. Geokhimiya. 2003;12:1305–1317. (In Russ.)

28. Ganzha G.B., Razvozzhayeva E.A. Organic substance in sedimentary rocks of Verninskoye gold deposit, Patom uplands. Rudy i metally. 2014;3:65–73. (In Russ.)

29. Meffre S, Large RR, Scott R, Woodhead J, Chang Z, Gilbert SE, et al. Age and pyrite Pb isotopic composition of the giant Sukhoi Log sedimenthosted gold deposit, Russia. Geochimica et Cosmochimica Acta. 2008;72:2377–2391. https://doi.org/10.1016/j.gca.2008.03.005

30. Large RR, Maslennikov VV, Robert F, Danyushevsky LV, Chang Z. Multitage sedimentary and metamorphic origin of pyrite and gold in the giant Sukhoi Log deposit, Lena Goldfield, Russia. Economic Geology and the Bulletin of the Society of Economic Geologists. 2007;102(7):1233–1267.

31. Chugaev AV, Plotinskaya OYu, Chernyshev IV, Kotov AA. Lead isotope heterogeneity in sulfides from different assemblages at the Verninskoe gold deposit (Baikal-Patom Highland, Russia). Doklady Akademii nauk. 2014;457(3):337–342. (In Russ.) https://doi.org/10.7868/S0869565214210191

32. Ikonnikova TA, Dubinina EO, Saroyan MR, Chugaev AV. Isotopic composition of the seam quartz oxygen and the host rock: the Sukhoy Log field, Russia. Geologiya rudnykh mestorozhdenii. 2009;51(6):560–567. (In Russ.)

33. Ivanov AI. Lateral-vertical ore-metallogenic zonality as the basis for districting of the BaikalPatom gold-mining province. Rudy i metally. 2010;1:60–68. (In Russ.)

34. Parshin A, Grebenkin N, Morozov V, Shikаlenko F. Research note: first results of a low-altitude unmanned aircraft system gamma survey by comparison with the terrestrial and aerial gamma survey data. Geophysical Prospecting. 2018;66(7):1433–1438. https://doi.org/10.1111/1365-2478.12650

35. Parshin AV, Morozov VA., Blinov AV, Kosterev AN, Budyak AE. Low-altitude geophysical magnetic prospecting based on multirotor UAV as a promising replacement for traditional ground survey. Geo-Spatial Information Science. 2018;21(1):67–74. https://doi.org/10.1080/10095020.2017.1420508

36. Parshin AV, Budyak AE, Blinov AV, Kosterev AN, Morozov VA, Mikhalev AO, et al. Lowaltitude unmanned aeromagnetic survey in management of large-scale structuralgeological mapping and prospecting for ore deposits in composite topography. Part 2. Geografiya i prirodnye resursy. 2016;S6:150–155. (In Russ.)

37. Budyak AE, Goryachev NA, Razvozzhaeva EA, Spiridonov AM, Sotskaya OT, Bryukhanova NN. Geochemistry of the scattered organic substance at gold fields of black-slate formations. Doklady Akademii nauk. 2015;463(6):692–695. (In Russ.) https://doi.org/10.7868/S0869565215240160

38. Goldfarb RJ, Baker T, Dube B., Groves D.I., Hart C.J.R., Gosselin P. Distribution, character, and genesis of gold deposits in metamorphic terranes. Economic Geology. 2005;100:407–450.

39. Groves DI, Goldfarb RJ, Gebre-Mariam M, Hagemann SG, Robert F. Orogenic gold deposits: a proposed classification in the context of their crustal distribution and relationship to other gold deposit types. Ore Geology Reviews. 1998;13(1–5):7–27. https://doi.org/10.1016/S0169-1368(97)00012-7

40. Groves DI, Goldfarb RJ, Gardoll S. Orogenic gold and geologic time: a global synthesis. Ore Geology Reviews. 2001;18(1–2):1–75. https://doi.org/10.1016/S0169-1368(01)00016-6

41. Buryak VA. Metamorphism and ore formation. Moscow: Nedra; 1982. 256 p. (In Russ.)

42. Buryak VA, Khmelevskaya NM. Sukhoi Log, one of the world’s largest gold deposits: genesis, regularities in mineralization location, and forecasting criteria. Vladivostok: Dal'nauka; 1997. 156 p. (In Russ.)


Review

For citations:


Babyak V.N., Blinov A.V., Tarasova J.I., Budyak A.E. New data on the geological and structural features of the Ozhereliye, Ykanskoye, Ugahan and Golets Vysochaishy gold fields. Earth sciences and subsoil use. 2019;42(4):388-412. (In Russ.) https://doi.org/10.21285/2686-9993-2019-42-4-388-412

Views: 671


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2686-9993 (Print)
ISSN 2686-7931 (Online)