Preview

Earth sciences and subsoil use

Advanced search

CRYSTALLOCHEMICAL ASPECTS IN THE EVALUATION OF CLAY MINERAL PARTICLE INTERACTION ENERGY

https://doi.org/10.21285/2541-9455-2018-41-1-99-114

Abstract

The goal of the paper is to analyze the changes in mineral crystal lattice under acid activation. Methods. Clay from the Slyudyanka deposit is the material under investigation. The methods used in the study include x-ray phase analysis using Bruker D8 Advance diffractometer. The diffractogram is recorded using the EVA program installed on a PC in combination with the diffractometer. The quantitative composition is calculated using the Topas 3.0 program. The study also uses the methods of scanning microscopy of the oriented sample, titrimetric analysis methods (the methods of neutralization and complexometry 0; conductivity measurement (determination of solution electrical conductivity); potentiometric measurements (determination of electrokinetic potential at electrophoresis); sedimentation analysis in gravitational and centrifugal fields. Modern databases and Excel are used for thermodynamic calculations. Results. Crystallochemical analysis of mineral structure and thermodynamic assessment of process spontaneous flow conditions allowed to explain the nature of the potential curve after acid activation of the clay from the Slyudyanka deposit. The extreme nature of this dependence is associated with the changes in the field of force on the surface of particles as a result of the flow of the complex of physico-chemical interactions, the most important of which are interactions of backbone ions with the components of environment. In its turn, the changes in the interaction energy of clay particle weight calculated by the results of colloid-chemical studies allow to analyze the processes occurring in the crystal lattice of clay under acid activation. Experimental data confirm the similarity of some patterns of acid activation of clay minerals associated to the fact that the process is accompanied by the washout of ions from the crystal lattice skeleton and formation of structure defects. The defects of crystal lattice causing the disturbance of its regularity, the transition of surface silica in amorphous state provide the change in both system dispersion and porosity of clay samples. Conclusions. It is more preferable to use the acid activation for the production of mineral sorbents with developed porosity when minerals with an expanding structural cell are used as a source material.

About the Authors

A. Yakovleva
Irkutsk National Research Technical University
Russian Federation

Doctor of technical sciences, Professor of the Department of Chemistry and Food Technology named after the Professor V.V. Tuturina

83, Lermontov St., Irkutsk, 664074, Russian Federation



G. Maltseva
Irkutsk National Research Technical University
Russian Federation

Candidate of Geology and Mineralogy, Professor of the Department of Applied Geology, Geophysics and Geoinformation Systems

83, Lermontov St., Irkutsk, 664074, Russian Federation



References

1. Shchukin E.D., Pertsov A.V., Amelina E.A. Kolloidnaya khimiya [Colloid chemistry]. Moscow: Vysshaya shkola Publ., 2006, 444 р. (In Russian).

2. Fridrikhsberg D.A. Kurs kolloidnoi khimii [A course of colloid chemistry]. Saint Petersburg – Moscow – Krasnodar: Lan' Publ., 2010, 416 р. (In Russian).

3. Pomazkina O.I., Filatova E.G., Pozhidaev Yu.N. Adsorption of nickel (II) cations by natural zeolites. Fizikokhimiya poverkhnosti i zashchita materialov [Protection of Metals and Physical Chemistry of Surfaces], 2014, vol. 50, no. 3, pp. 262–267. (In Russian).

4. Pomazkina O.I., Filatova E.G., Pozhidaev Yu.N. Adsorption of copper (II) ions by calcium heulandite. Fizikokhimiya poverkhnosti i zashchita materialov [Protection of Metals and Physical Chemistry of Surfaces], 2015, vol. 51, no. 4, pp. 370–374. (In Russian).

5. Filatova E.G., Pozhidaev Yu.N., Pomazkina O.I. Investigation of adsorption of heavy metal ions by natural aluminosilicate. Fizikokhimiya poverkhnosti i zashchita materialov [Protection of Metals and Physical Chemistry of Surfaces], 2016, vol. 52, no. 3, pp. 285–289. (In Russian).

6. Tarasevich Yu.I., Ovcharenko F.D. Adsorbtsiya na glinistykh mineralakh [Adsorption on clay minerals]. Kiev: Naukova dumka Publ., 1975, 351 р. (In Russian).

7. Tarasevich Yu.I. Stroenie i khimiya poverkhnosti sloistykh silikatov [Structure and surface chemistry of layer silicates]. Kiev: Naukova dumka Publ., 1988, 248 р. (In Russian).

8. Parfit G., Rochester K. Adsorbtsiya iz rastvorov na poverkhnostyakh tverdykh tel [Adsorption from solutions on the surfaces of solids]. Moscow: Mir Publ., 1986, 488 р. (In Russian).

9. Tal'gamer B.L., Fedorko V.P. Mineral'no-syr'evaya baza i perspektivy razvitiya gornodobyvayushchei promyshlennosti Irkutskoi oblasti [Mineral resources and development prospects of Irkutsk region mining industry]. Irkutsk: Irkutsk State Technical University Publ., 2002, 91 р. (In Russian).

10. Yakovleva A.A., Vo Dai Tu, Chyong Suan Nam. Nerudnye mineraly Irkutskoi oblasti kak ob"ekt kolloidno-khimicheskikh issledovanii [Non-metallic minerals of the Irkutsk region as an object of the colloidchemical researches]. V mire nauchnykh otkrytii [In the World of Scientific Discoveries], 2010, no. 4-15, pp. 129–132. (In Russian).

11. Yakovleva A.A., Vo Dai Tu. Ionexchange of clay minerals from some deposits of Ir-kutsk region. Russian journal of applied chemistry, 2012, vol. 85, no. 3, рр. 348–351.

12. Yakovleva A.A., Vo Dai Tu. Effect of electrolytes on the stability of suspensions based on clay from Slyudyansky deposit. Vestnik Irkutskogo gosudarstvennogo tekhnicheskogo universiteta [Bulletin of Irkutsk State Technical University], 2010, no. 6 (46), рр. 209–213. (In Russian).

13. Yakovleva A.A., Vo Dai Tu. Energiya vzaimodeistviya chastits glinistykh minera-lov ryada mestorozhdenii Irkutskoi oblasti [Interaction energy of particles of clay minerals of a number of fields in Irkutsk region]. Fizicheskaya khimiya poverkhnostnykh yavlenii i adsorbtsii: trudy II Vserossiiskogo seminara [Proceedings of II AllRussian Seminar “Physical Chemistry of Surface Phenomena and Adsorption”]. Ivanovo, 2011, рр. 72–74. (In Russian).

14. Osipov V.I., Sokolov V.N., Rumyantseva N.A. Mikrostruktura glinistykh porod [Microstructure of clay rocks]. Moscow: Nedra Publ., 1989, 211 р. (In Russian).

15. Sokolov V.N. Formirovanie mikrostruktury glinistykh gruntov v khode progressivnogo litogeneza [Clay soil microstructure formation under progressive lithogenesis]. Inzhenernaya geologiya: teoriya, praktika, problemy [Engineering Geology: Theory, Practice, Problems]. Moscow: Moscow State University Publ., 1993, рр. 26‒41. (In Russian).

16. Roldugin V.I. Fizikokhimiya poverkhnosti [Physical chemistry of surface]. Dolgoprudnyi: Izdatel'skii Dom ”Intellekt” Publ., 2008, 568 р. (In Russian).

17. Begunov A.I., Yakovlev S.A., Yakovleva A.A. Kineticheskie zakonomernosti ras-tvoreniya magniya v kislykh sredakh [Kinetic regularities of magnesium dissolving in acidic media]. Izvestiya vuzov. Tsvetnaya metallurgiya [Russian Journal of Non-Ferrous Metals], 2006, no. 2, рр. 9–12. (In Russian).

18. Prigozhin I., Kondepudi D. Sovremennaya termodinamika [Modern thermodynamics]. Moscow: Mir Publ., 2009, 461 р. (In Russian).

19. Novich B.E., Kol'tsev T.A. Kolloidnaya ustoichivost' gliny s ispol'zovaniem fotonnoi korrelyatsionnoi spektroskopii [Colloidal stability of clays using photon correalation spectroscopy]. Gliny i glinistye mineral [Clays and clay minerals], 1984, vol. 32, no. 5, рр. 400‒406. (In Russian).


Review

For citations:


Yakovleva A., Maltseva G. CRYSTALLOCHEMICAL ASPECTS IN THE EVALUATION OF CLAY MINERAL PARTICLE INTERACTION ENERGY. Earth sciences and subsoil use. 2018;41(1):99-114. (In Russ.) https://doi.org/10.21285/2541-9455-2018-41-1-99-114

Views: 402


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2686-9993 (Print)
ISSN 2686-7931 (Online)