Preview

Науки о Земле и недропользование

Расширенный поиск

Оценка эффективности интегрированных исследований продольных и поперечных волн с помощью ультразвука

https://doi.org/10.21285/2686-9993-2022-45-1-8-33

Полный текст:

Аннотация

В статье оценивается потенциал комплексной геофизической, в частности комбинированной приповерхностной, съемки продольных (P-) и поперечных (S-) волн, что продемонстрировано с использованием умеренно сокращенных хронографических (время и скорость) данных ультразвукового изображения (1 МГц). Рассмотрен случай инфильтрации разливов водного и неводного происхождения, особое внимание уделено разливам ископаемого топлива. Последние оценены в пределах приповерхностной геологии с точки зрения возможных сложностей взаимодействия жидкостей и окружающей среды, которые экспериментально моделируются в виде компонентов потока несмешивающегося вытеснения. Такие процессы широко изучаются в различных областях, в частности при геозондировании становлением поля в ближней зоне, инженерии, включая экологические аспекты, а также геокатастрофы. Для лучшего понимания проблемы наряду с соответствующей теорией, достоверной методологией и выводами в статье представлены интересные актуальные сценарии, в том числе вопросы геологической сложности хорошо известных географических мест, влияние на них различных естественных или антропогенных стрессовых факторов. Подробно объясняются экспериментальные аналоги и геометрические ограничения. Ультразвуковые P- и S-волны и аналитически проверенные данные в актуальном контексте получают всестороннюю оценку. Данные об S-волнах не только подтверждают набор признаков данных P-волны в пространственно-временной локализации смещенной фазы, включая «тусклое пятно» (что является интересным признаком, соответствующим границе раздела (смешанная фаза)), S-волны также проявляют другие упругие и термомеханические характеристики того же свойства. Далее автором был подтвержден расход, в частности расход нагнетания, а также контроль или зависимость запланированного процесса вытеснения, например в маркерных и коррекционных исследованиях (при необходимости). Предполагается, что пригодность характеристики S-волн для выявления других особенностей взаимодействия систем «жидкость – жидкость» и «жидкость – твердое тело» в микро- и, возможно, в наномасштабе (например, амплитудные эффекты) будет иметь значительные перспективы.

Об авторе

Б. Хассан
Мемориальный университет Ньюфаундленда
Канада

Хассан Билал, доктор наук, исследователь в области наук о Земле и технических наук

г. Сент-Джонс



Список литературы

1. Cavazza W., Wezel F. C. The Mediterranean region-a geological primer // Episodes. 2003. Vol. 26. Iss. 3. P. 160–168. https://doi.org/10.18814/epiiugs/2003/v26i3/002.

2. Doglioni C., Flores G. An introduction to the Italian geology. Potenza: Lamisco, 1997. 96 p.

3. Esposito E., Porfido S., Violante C, Biscarini C., Alaia F., Esposito G. Water events and historical flood recurrences in the Vietri sul Mare coastal area (Costiera Amalfitana, southern Italy) // The basis of civilization – water science?: proceedings of the UNESCO / IAHS / IWHA Symposium. Rome, 2004. P. 95–106.

4. Violante C., Biscarini C., Esposito E., Molliso F., Porfido S., Sacchi M. The consequences of hydrological events on steep coastal watersheds, the Costa d’Amalfi, eastern Tyrrhenian Sea // The role of hydrology in water resources management: proceedings of a symposium. Vol. 327. Capri, 2009. P. 102–113.

5. Dragoni W., Pellergrini M., Zvatti A. Some examples of ground water pollution in Italy // Studies in Environmental Science. 1981. Vol. 17. P. 101–104. https://doi.org/10.1016/S0166-1116(08)71889-2.

6. Iadanza C., Trigila A., Vittori E., Serva. L. Landslides in coastal areas of Italy // Geological Society of London, Special Publications. 2009. Vol. 322. Iss. 1. P. 121–141. https://doi.org/10.1144/SP322.5.

7. Civita M. V., Massarutto A., Seminara G. Groundwater in Italy: а review // Easac.eu. Available from: https://easac.eu/fileadmin/PDF_s/reports_statements/Italy_Groundwater_country_report.pdf [Accessed 24th December 2021].

8. Newell C. J., Acree S. D., Ross R. R., Huling S. G. Light nonaqueous phase liquids // Epa.gov. https://www.epa.gov/sites/default/files/2015-06/documents/lnapl.pdf [Accessed 24th December 2021].

9. Lio Y., Sibson R. H., Takeshita T., Sagiya T., Shibazaki B., Nakajima T. J. Crustal dynamics: unified understanding of geodynamic processes at different time and length scales // Earth, Planets and Space. 2018. Vol. 70. P. 97. https://doi.org/10.1186/s40623-018-0869-6.

10. Müller B., Doan M.-L., Goebel T. H., Liu Y., Martínez-Garzón P., Mitchell T., et al. Understanding and anticipating induced seismicity // Eos. 2021. Vol. 102. https://doi.org/10.1029/2021EO161325.

11. Cui H., Zhou J., Li Z., Gu C. Editorial: soil and sediment pollution, processes and remediation // Frontiers in Environmental Science. 2021. Vol. 9. P. 822355. https://doi.org/10.3389/fenvs.2021.822355.

12. Rosenqvist I. T. The influence of physico-chemical properties upon the mechanical properties of clays // Clays and Clay Minerals. 1960. Vol. 9. P. 12–27. https://doi.org/10.1346/CCMN.1960.0090103.

13. Steeples D. W. Near-surface geophysics: 75 years of progress // The Leading Edge. 2005. Vol. 24(s1). P. s82– s85. https://doi.org/10.1190/1.2112395.

14. Noell U., Meyer U. Future chances and challenges for near surface geophysics // American Geophysical Union, Fall Meeting. 2011. P. NS11B-01.

15. Doll W. E., Miller R. D., Bradford J. The emergence and future of near-surface geophysics // The Leading Edge. 2012. Vol. 31. Iss. 6. P. 684–692. https://doi.org/10.1190/tle31060684.1.

16. Butt S. D. Development of an apparatus to study the gas permeability and acoustic emission characteristics of out-burst prone sandstone as a function of stress // International Journal of Rock Mechanics and Mining Sciences. 1999. Vol. 36. Iss. 8. P. 1079–1085. https://doi.org/10.1016/S1365-1609(99)00067-2.

17. Donald J. A., Butt S. D., Iakovlev S. Adaptation of a triaxial cell for ultrasonic P-wave attenuation, velocity and acoustic emission measurements // International Journal of Rock Mechanics and Mining Sciences. 2004. Vol. 41. Iss. 6. P. 1001–1011. https://doi.org/10.1016/j.ijrmms.2004.03.004.

18. Van Meurs P. The use of transparent three dimensional models for studying mechanism of flow processes in oil reservoirs // Petroleum Transactions, AIME. 1957. Vol. 210. Iss. 1. P. 295–301. https://doi.org/10.2118/678-G.

19. Chen J.-D., Wada N. A new technique for visualizing the distribution of oil, water and quartz grains in a transparent, three dimensional, porous medium // SPE Formation Evaluation. 1986. Vol. 1. Iss. 2. P. 205–208. https://doi.org/10.2118/13349-PA.

20. Torquato S., Truskett T. M., Debenedetti P. G. Is random closed packing of spheres well defined? // Physical Review Letters. 2000. Vol. 84. Iss. 10. P. 2064–2067. https://doi.org/10.1103/PhysRevLett.84.2064.

21. Hertz H. R. Über die Berührung fester elastischer Körper // Journal für die Reine und angewandte Mathematik. 1881. Vol. 92. S. 156–171.

22. Mindlin R. D. Compliance of elastic bodies in contact // Journal of Applied Mechanics. 1949. Vol. 16. P. 259– 268. https://doi.org/10.1115/1.4009973.

23. Stoll R. D. Sediment acoustics. New York: Springer-Verlag, 1989. 153 p.

24. Digby P. J. The effective elastic moduli of porous granular rocks // Journal of Applied Mechanics. 1981. Vol. 48. Iss. 4. P. 803–808. https://doi.org/10.1115/1.3157738.

25. Biot M. A. Mechanics of deformation and acoustic propagation in porous media // Journal of Applied Physics. 1962. Vol. 33. P. 1482–1498. https://doi.org/10.1063/1.1728759.

26. Dunlap H. F., Johnson C. H. Research and progress in exploration // Geophysics. 1958. Vol. 23. Iss. 2. P. 267–284. https://doi.org/10.1190/1.1438467.

27. Duffy J., Mindlin R. D. Stress-strain relations and vibrations of a granular medium // Journal of Applied Mechanics. 1957. Vol. 24. Iss. 4. P. 585–593. https://doi.org/10.1115/1.4011605.

28. Dereziewicz H. Stress-strain relations for a simple model of granular medium // Journal of Applied Mechanics. 1958. Vol. 25. Iss. 3. P. 402–406. https://doi.org/10.1115/1.4011835.

29. Hales T. C. A proof of the Kepler conjecture // Annals of Mathematics. 2005. Vol. 162. P. 1065–1185. https://doi.org/10.4007/annals.2005.162.1065.

30. Rogers C. A. The packing of equal spheres // Proceedings of the London Mathematical Society. 1958. Vol. s3-8. Iss. 4. P. 609–620. https://doi.org/10.1112/plms/s3-8.4.609.

31. King W. C., Witten A. J., Reed G. R. Detection and imaging of buried wastes using seismic wave propagation // Journal of Environmental Engineering. 1989. Vol. 115. Iss. 3. P. 527–540. https://doi.org/10.1061/(ASCE)0733-9372(1989)115:3(527).

32. Potts B. D., Santamarina C. Geotechnical tomography: the effects of diffraction // Geotechnical Testing Journal. 1993. Vol. 16. Iss. 4. P. 510–517. https://doi.org/10.1520/GTJ10290J.

33. Berryman J. G. Scattering by a spherical inhomogeneity in a fluid-saturated porous medium // Journal of Mathematical Physics. 1985. Vol. 26. Iss. 6. P. 1408–1419. https://doi.org/10.1063/1.526955.

34. Yamakawa N. Scattering and attenuation of elastic waves // The Geophysical Magazine. 1962. Vol. 31. P. 63–103.

35. Davies J. T., Rideal E. K. Interfacial phenomenon. New York: Academic Press, 1963. 480 p.

36. Newman J. L., Waddell C., Sauder H. L. A flowmeter for measuring subsurface flow rates // Journal of Petroleum Technology. 1956. Vol. 8, Iss. 7. P. 49–52. https://doi.org/10.2118/509-G.

37. Curtis M. R. Flow analysis in producing wells // Fall Meeting of the Society of Petroleum Engineers of AIME. 1967. https://doi.org/10.2118/1908-MS.

38. Woessner W. W., Sullinvan K. E. Results of seepage meter and mini piezometer study // Ground Water. 1984. Vol. 22. P. 561–568.

39. England W. A., Mackenzie A. S., Mann D. M., Quigley T. M. The movement and entrapment of petroleum fluids in the subsurface // Journal of the Geological Society. 1987. Vol. 144. Iss. 2. P. 327–347. https://doi.org/10.1144/gsjgs.144.2.0327.

40. Becker M. W., Georgian T., Ambrose H., Siniscalchi J., Fredrick K. Estimating flow and flux of ground water discharge using water temperature and velocity // Journal of Hydrology. 2004. Vol. 296. Iss. 1–4. P. 221–233. https://doi.org/10.1016/j.jhydrol.2004.03.025.

41. Ziomek L. J. Wave propagation in the rectangular coordinate system // Fundamentals of acoustic field theory and space-time signal processing. Boca Raton: CRC Press, 1995. P. 47–151.

42. Vinogradova O. I. Slippage of water over hydrophobic surfaces // International Journal of Mineral Processing. 1999. Vol. 56. Iss. 1–4. P. 31–60. https://doi.org/10.1016/S0301-7516(98)00041-6.

43. Markov M. G. Effect of interfacial slip on the kinematic and dynamic parameters of elastic waves in a fluid-saturated porous medium // Acoustical Physics. 2007. Vol. 53. P. 213–216. https://doi.org/10.1134/S1063771007020157.

44. Mungan N. Role of wettability and interfacial tension in water flooding // Society of Petroleum Engineers Journal. 1964. Vol. 4. Iss. 2. P. 115–123. https://doi.org/10.2118/705-PA.

45. Mungan N. Interfacial effects in immiscible liquidliquid displacement in porous media // Society of Petroleum Engineers Journal. 1966. Vol. 6. Iss. 3. P. 247–253. https://doi.org/10.2118/1442-PA.

46. Rimmer A., Parlange J. Y., Steenhuis T. S., Darnault C., Wendy C. Wetting and nonwetting fluid displacements in porous media // Transport in Porous Media. 1996. Vol. 25. P. 205–215. https://doi.org/10.1007/BF00135856.

47. Bolster D., Neuwiler I., Dentz M. Carrera J. The impact of buoyancy on front spreading in heterogeneous porous media in two-phase immiscible flow // Water Resources Research. 2011. Vol. 46. Iss. 2. P. W02508. https://doi.org/10.1029/2010WR009399.

48. Carino N. J. Stress wave propagation methods // Handbook of nondestructive testing of concrete / V. M. Malhotra, N. J. Carino. Boca Raton: CRC Press, 2004. P. 275–304.

49. Stoll R. D. Acoustic waves in ocean sediments // Geophysics. 1977. Vol. 42. Iss. 2. P. 715–725. https://doi.org/10.1190/1.1440741.

50. Plona T. J., Johnson D. L. Experimental study of the two bulk compressional modes in water-saturated porous structures // 1980 Ultrasonic Symposium. 1980. P. 866–672. https://doi.org/10.1109/ULTSYM.1980.197522.

51. Plona T. J., D'Angelo R., Johnson D. L. Velocity and attenuation of fast, shear and slow waves in porous media // IEEE Symposium on Ultrasonics. 1990. Vol. 36. P. 1233–1239. https://doi.org/1109/ULTSYM.1990.171559.

52. Mavko G., Mukerji T., Dvorkin J. The rock physics handbook: tools for seismic analysis in porous media. New York: Cambridge University Press, 2007. 329 p.

53. Rasolofosaon P. J., Zinszner B. E. Poroelastic equations closely examined by ultrasonic experiments in rocks // Poromechanics IV: Proceedings of the Fourth Biot Conference on Poromechanics. New York: Destech Publications, 2009. P. 661–666.

54. Smith T. M., Sondergeld C. H., Rai C. S. Gassmann fluid substitutions, a tutorial // Geophysics. 2003. Vol. 68. Iss. 2. P. 430–440. https://doi.org/10.1190/1.1567211.

55. Berryman J. G. Fluid effects on seismic waves in hard rocks with fractures and soft granular media // Poromechanics IV: Proceedings of the Fourth Biot Conference on Poromechanics. New York: Destech Publications, 2009. P. 598–603.


Рецензия

Для цитирования:


Хассан Б. Оценка эффективности интегрированных исследований продольных и поперечных волн с помощью ультразвука. Науки о Земле и недропользование. 2022;45(1):8-33. https://doi.org/10.21285/2686-9993-2022-45-1-8-33

For citation:


Hassan B. Viability assessment of integrated P- and S-wave surveys using ultrasound. Earth sciences and subsoil use. 2022;45(1):8-33. https://doi.org/10.21285/2686-9993-2022-45-1-8-33

Просмотров: 60


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2686-9993 (Print)
ISSN 2686-7931 (Online)