Геология, поиски и разведка месторождений полезных ископаемых
Целью исследований являлось уточнение минерального состава и определение условий формирования кварц-гюбнеритовых прожилков Инкурского вольфрамового штокверкового месторождения Джидинского рудного поля (Юго-Западное Забайкалье). Авторами было проведено минералого-петрографическое описание рудных кварц-гюбнеритовых прожилков, а также электронно-микроскопические исследования минеральных ассоциаций, термобарогеохимические исследования, включающие крио-термометрию, спектроскопию комбинационного рассеяния света индивидуальных флюидных включений в кварце, флюорите, гюбнерите и мусковите. Проведенные минералого-петрографические исследования позволили уточнить минеральный состав руд Инкурского месторождения, определить последовательность формирования минеральных парагенезисов. Термобарогеохимическими исследованиями установлено, что рудоотложение шло с понижением температуры из относительно слабосоленых (~5,7–14,6 масс. % эквивалента хлорида натрия) гомогенных растворов, в солевом составе которых преобладали хлориды кальция с примесями хлоридов натрия, калия и магния. В газовой фазе включений идентифицированы углекислый газ и азот. Установлены как минимум две стадии минералообразования: высокотемпературная (≥300 °С) и низкотемпературная (≥200–300 °С). Проведенные исследования позволили качественно оценить химический состав рудообразующих растворов. Установлено, что одним из главных факторов осаждения гюбнерита является снижение температуры.
Новой идеей в исследовании глобальных тектонических движений является концепция тектоники открытия-закрытия, которая утверждает, что каждое тектоническое явление, преобразование вещества и формирование геологических тел на Земле – это результат чередующихся движений открытия и закрытия. Тектонический взгляд на открытие-закрытие может быть использован для объяснения некоторых геологических явлений, развивающихся на континентах, которые не могут быть однозначно объяснены теорией тектоники плит. Основываясь на доступных геологических данных и опираясь на концепцию открытия-закрытия, авторы проанализировали стратиграфические подразделения и тектонические единицы Южного Тибета и предложили разделить эту территорию на разломные зоны гравитационного отрыва и разломные зоны тектонического отрыва, которые накладываются друг на друга. Несмотря на широко распространенное мнение о том, что Тибетское нагорье образовано орогенезом столкновения-сжатия, полевые исследования выявили существование нормального сброса храма Жунбу в 1970-х гг. Мы считаем, что нормальный сброс храма Жунбу и Главный центральный надвиг были сформированы раньше, чем разлом Южного Тибета, а первые два разлома представляют собой две границы экструзионной структуры Южного Тибета. Разлом Южного Тибета частично накладывается на Главный центральный надвиг и, имея относительно большой угол, следует за нормальным сбросом храма Жунбу к северу от Джомолунгмы. Мы предполагаем, что три системы разломов являются продуктами разных периодов и разных тектонических процессов. Тектонические единицы, такие как клипы и окна, идентифицированные предыдущими исследователями в Южном Тибете, принадлежат к системе надвигов, но обычно не имеют явных характеристик сжатия и надвигания, в то же время они характеризуются отсутствием стратификации пластов, поскольку более молодые пласты перекрывают более старые. Эти клипы и окна, скорее всего, являются результатом более позднего гравитационного наложения и должны быть охарактеризованы как удлинение и проскальзывание соответственно. Основываясь на теории открытия-закрытия, мы предполагаем, что начиная с кайнозоя исследуемая область претерпела многоэтапное развитие, которое можно разделить на последовательное расширение (раскрытие) и субдукцию (закрытие) океанической коры, а также следующие за ними этапы континентальной коллизии (закрытие) и внутриконтинентального расширения (раскрытие). Геотермальная энергия и гравитационная потенциальная энергия из недр Земли, а также дополнительная энергия напряжения от тектонических движений – все это сыграло ключевую роль в многоступенчатом тектоническом эволюционном процессе.
Цель данной работы заключалась в иллюстрации влияния размеров установки на проявление низкочастотной дисперсии электромагнитных свойств геологической среды в измерениях переходного процесса электрическими линиями в осевой области источника на акваториях с глубиной не более 100 м. В ходе исследования проанализировано изменение сигнала переходного процесса, конечной разности сигнала переходного процесса и трансформанты (отношения этих величин) в зависимости от длины источника – горизонтальной заземленной электрической линии (AB) от 50 до 2000 м, длины приемника – трехэлектродной электрической линии (MON) от 50 до 2000 м, а также расстояния между их центрами (разноса) от 100 до 4000 м. Проведено сравнение указанных величин от проводящей и проводящей поляризующейся модели для одинаковых установок, находящихся на одинаковых глубинах. Заземленная электрическая линия находится внутри проводящей среды с проводящим поляризующимся основанием. Проводящая среда ассоциируется с толщей морской воды в шельфовых областях с глубинами моря до 100 м. Проводящее поляризующееся основание – это геологическая среда (земля), перекрытая слоем воды. Учет поляризуемости основания осуществлен введением частотно зависимого удельного электрического сопротивления посредством формулы Коула – Коула. Выполненные расчеты показывают проявление различных составляющих переходного процесса, связанных со становлением электромагнитного поля и с проявлением низкочастотной дисперсии электромагнитных свойств земли, вызванной как гальваническим, так и вихревым током. Эти составляющие по-разному проявляются на установках с разными размерами питающей и приемных линий и разноса. На основании расчетов можно утверждать: на разных по размерам установках, погруженных в водный слой, при его мощности 100 м на временном диапазоне от 1 мс до 16 с прослеживается зависимость характера сигнала от глубины погружения для «малых» установок с линией АВ 50 и 100 м и отсутствие такой зависимости для остальных установок, использовавшихся при расчетах, с линией АВ 250, 500, 1000 и 2000 м.
Разведка и разработка месторождений полезных ископаемых
В данной статье приведены результаты подбора рецептуры тампонажного раствора из цемента, не соответствующего стандарту качества, для цементирования верхней части колонны при строительстве нефтяной скважины. Объектом исследования являлся цемент марки ПЦТ III-об 5-50 ГОСТ 1581-96. В цемент вводились добавки, которые, согласно литературе, способны улучшить его технологические показатели: хлористый кальций (CaСl2), хлористый натрий (NaCl), хлористый магний (MgCl2), гипс (CaSO4·2H2O), мраморная крошка (МК-100), микрокремнезем (МК-65, МК-85), каустическая и кальцинированная соды (NaOH и Na2CO3), а также полианионная целлюлоза высокой и низкой вязкости (ПАЦ ВВ и ПАЦ НВ). Определялись следующие технологические показатели: плотность раствора, растекаемость цементного теста, водоотделение, загустевание раствора, пределы прочности тампонажного камня при изгибе и сжатии. Исследования проводились с учетом отечественных и международных стандартов. Результаты испытаний показали, что применение добавок NaCl, MgCl2, CaСl2, Easy SET, МК-100 и CaSO4·2H2O улучшает водоотделение цементного раствора и прочностные характеристики цементного камня. Однако реагенты, предназначенные для снижения водоотделения ( ПАЦ НВ, ПАЦ ВВ, Na2CO3, NaOH, МК-65 и МК-85) существенно снижают прочностные характеристики цементного камня. Крепление колонны вышеупомянутым цементом возможно с применением следующих реагентов: CaCl2 в количестве 2 %, NaCl в количестве 1,2 %, MgCl2 в количестве 1 %, а также упрочняющего реагента Easy SET в количестве 1 % от массы цемента.
Целью исследования является анализ зависимости между уточнением сложности геологического строения Верхнечонского нефтегазоконденсатного месторождения и корректировкой планов его разработки. В работе использованы данные опытно-промышленной эксплуатации ОАО «Верхнечонскнефтегаз» по разведочным и эксплуатационным скважинам, результаты геофизических работ и материалы исследований, опубликованные в открытой печати. Верхнечонское месторождение имеет уникальное по сложности геологическое строение, что обусловлено сочетанием тектонических нарушений, сопровождавшихся внедрением траппов, высокой минерализацией пластовых вод, резкой изменчивостью фильтрационно-емкостных свойств продуктивных горизонтов по площади и разрезу из-за невыдержанности литологического состава коллекторов, их засолонения и полного выклинивания. Система разработки любого месторождения должна учитывать особенности его структурно-тектонического, литолого-фациального строения и отвечать конкретным технико-экономическим требованиям, предъявляемым к бурению и эксплуатации скважин. Сложность строения Верхнечонского месторождения диктует особо тщательный выбор системы разработки, которая закономерно изменяется по мере изучения особенностей строения месторождения. Так, на первых этапах разработки месторождения был предложен проект бурения вертикальных скважин, который вскоре сменился проектом бурения наклонно-горизонтальных скважин с расчетом двух вариантов. По проекту опытно-промышленной эксплуатации Верхнечонского нефтегазоконденсатного месторождения ОАО «Верхнечонскнефтегаз» для наиболее разведанных залежей I и II блоков верхнечонского горизонта были разработаны два варианта равномерных сеток наклонно-направленных и горизонтальных скважин с площадным заводнением. В связи с развитыми процессами вторичного засолонения коллекторов использование метода заводнения потребовало изучения состава пластовых вод. Предложенный план бурения с применением забойного двигателя и гамма-каротажа не обеспечивал проводку стволов по наиболее продуктивным участкам пласта, вследствие чего дебиты некоторых наклонно-направленных и горизонтальных скважин оказались недостаточно высокими. С целью увеличения эффективности бурения специалисты департамента буровых работ ОАО «Верхнечонскнефтегаз» совместно со специалистами департамента по геологии и разработке месторождений компании Schlumberger предложили новую методику, позволяющую повысить эффективность бурения за счет использования роторно-управляемой системы, каротажа во время бурения и геонавигации. Таким образом, система разработки Верхнечонского месторождения изменялась по мере уточнения особенностей геологического строения, анизотропии фильтрационно-емкостных свойств и толщин продуктивных горизонтов по площади и разрезу, их засолонения и полного выклинивания, состава пластовых вод.
Цель описанного исследования заключалась в расширении возможностей применения методов ядерно-магнитной резонансной релаксометрии и диэлектрической спектрометрии на примере совместной интерпретации данных этих методов для оперативного получения дополнительной петрофизической информации о свойствах и структуре порового пространства бурового шлама. Актуальность работы обусловлена тем, что данные, полученные на буровом шламе при помощи комплекса этих методов, могут использоваться в качестве опорной (начальной) информации при интерпретации данных геофизических исследований скважин до проведения детальных петрофизических исследований керна или при его отсутствии в интервале отбора. Объектом исследования служили образцы бурового шлама с месторождений Западно-Сибирской нефтегазоносной провинции на предмет определения их фильтрационно-емкостных свойств при насыщении разными флюидами методами импульсной ядерно-магнитной резонансной релаксометрии и диэлектрической спектрометрии. В рамках экспериментальных исследований выполнены ядерно-магнитные резонансные измерения образцов керна разной степени дискретизации для определения их фильтрационно-емкостных свойств в зависимости от степени измельчения. Показано, что результаты не зависят от размерности частиц измеряемого образца и согласуются с результатами стандартных петрофизических исследований. Установлены зависимости пористости от типа насыщающего флюида. На основе данных метода диэлектрической спектроскопии определено значение комплексной диэлектрической проницаемости образцов, которое показывает, как изменяется степень насыщения в зависимости от флюида и что происходит в поровом пространстве. Совместная интерпретации результатов данных этих двух методов позволяет получить дополнительную информацию о фильтрационно-емкостных свойствах бурового шлама и использовать ее в качестве априорной информации о свойствах пласта-коллектора.
Геоэкология
Поверхность Земли представляет собой сложную систему, включающую взаимодействие многих ее компонентов, в том числе гор, рек, лесов, сельскохозяйственных угодий, озер и трав. Взаимодействие и взаимная обратная связь химических элементов в поверхностном слое Земли может привести к изменениям в структуре распределения химических элементов. В этом исследовании авторы оценили механизмы и взаимодействия, определяющие характер распределения макроэлементов, пробиотиков, галогенов и тяжелых металлов в почвах Юго-Западного Китая, на основе систематического геохимического исследования качества земли в масштабе 1:250000. Результаты показали, что исходный материал определяет естественное состояние химических элементов земельных ресурсов. Эпигенетическая геохимическая динамика меняет характер распределения химических элементов в верхнем слое почвы, биогеохимические процессы определяют эволюционные тенденции качества земли, а деятельность человека, такая как добыча полезных ископаемых, нарушает естественную эволюционную схему распределения химических элементов. Создание теории эпигенетической геохимической динамики позволяет построить основу для понимания поверхностного слоя Земли и продвигать инновационные технологии для всестороннего геохимического исследования ресурсов земной коры.
Результаты полевых исследований
В статье изложена структура и представлены результаты учебно-производственной практики студентов Института недропользования Иркутского национального исследовательского технического университета (Россия) в Нанкинском университете (Китай), проходившей в период с 6 по 21 сентября 2019 г. Цель работы заключалась в описании исследований, проводившихся на территории Восточного Китая в районе г. Нанкин под руководством профессора Юнчжань Чжан. Основное внимание в ходе полевых маршрутов было направлено на изучение геолого-структурных и географических особенностей Южно-Китайского блока, знакомство с ведущими эндо- и экзогенными процессами на этой территории. При анализе архивных и литературных источников, обобщении материалов полевых наблюдений получены сведения о тектонике и магматизме района, об условиях формирования термальных источников подземных вод Таньшань, о причинах проявления вулканизма и других геодинамических процессах на исследуемой территории, об особенностях гидрологического режима р. Фучуньцзян.
Ольхонский регион как часть Восточной Сибири обладает богатыми и уникальными растительными и животными ресурсами благодаря специфическому географическому положению. Муравьи, в свою очередь, являются важной составной часть экосистемы и играют в ней важную роль. В целях исследования экологической роли муравьев-строителей в этом регионе авторы данной статьи обратили внимание на корреляцию между расположением муравейников и видами растений. В районе исследований были выбраны пять пробных площадей (5 м × 5 м), каждая из которых затем была разделена на двадцать пять квадратов (1 м × 1 м). Отмечалось местонахождение каждого муравейника, сооруженного Formica candida, количество, видовой состав и биомасса различных растений в каждом малом квадрате. С использованием матриц случайным образом тестировалась картина распределения муравейников. Корреляцию между растениями и расположением насыпей муравьев проверяли с помощью корреляционного и регрессионного анализа. Результат показал, что пространственное распределение муравейников оказалось случайным. Также было обнаружено, что растения Artemisia frigida, Carex duriuscula и Oxytropis sylvestris имели значительную линейную связь с пространственным распределением муравейников (P < 0,05), предполагается, что пространственное распределение муравейников зависит от пространственного распределения некоторых растений. Авторы связали эту корреляцию с привычками питания и стратегиями старения черного болотного муравья, а также со структурой тканей указанных трех видов растений. Проведенное исследование выявило взаимодействие между муравьем и некоторыми видами растений в Ольхонском регионе и может являться основой для будущих исследований совместной эволюции растительных и животных ресурсов в этой уникальной экосистеме.
ISSN 2686-7931 (Online)