Preview

Earth sciences and subsoil use

Advanced search
Vol 45, No 1 (2022)
View or download the full issue PDF (Russian)

Geology, Prospecting and Exploration of Mineral Deposits

8-33 238
Abstract

Potential of, integrated geophysical, especially P- and S-wave combined near surface surveys, is assessed; demonstrated with use of sparingly, reduced chronographic i. e., time and velocity, (1 MHz) ultrasonic imaged data. Case of aqueous and non-aqueous, predominantly, fossil fuel origins spills seepage within near-surface geology is examined in terms of evaluation of possible complexities of fluids and surrounding interactions; which are experimentally simulated embodied as flow components of an immiscible displacement process. Such processes are understood and studied widely, within various, especially near-field geo- and engineering including environmental and also geo-disaster contexts. Interesting relevant scenarios, including aspects, of geological complexity of well known geographical locations while their subjugation also to various, whether natural or anthropogenic, stressors are presented alongside pertinent theory for better grasp, including plausibility, of methodology and inferring. Experimental analogues and geometrical constraints are explained in detail. Ultrasonic P- and S-wave, data in relevant context, also verified analytically, are comprehensively evaluated. S-wave data not only corroborates P-wave data attributes in time-space localization of displaced, from displacing phase, including a “dim spot”, an interesting artifact corresponding to interface (or mixed phase) region, S-wave also manifested other elastic and thermo-mechanical characteristics of the same feature. Further a flow rate, especially, that of injection, control or dependence of a planned displacement process was confirmed, for example if required in tracer and remedial studies. S-waves characteristic suitability to reveal other fluid-fluid and fluid-solid interaction peculiarities at micro and possibly at nano scale, as amplitude effects, is foreseen to assume significant promise.

34-49 400
Abstract

The purpose of the research is to identify and study the features of mineral composition and formation conditions of ores of the Kholtoson tungsten deposit located within the Dzhida molybdenum-tungsten ore field (South-West Transbaikalia, Russia). The study employs a complex of mineralogical-petrographic and thermobarogeochemical methods. The molybdenum mineralization of the Dzhida ore field is confined to the apical part of the Pervomaisky stock (Pervomayskoye deposit), the tungsten mineralization is confined to numerous quartz veins in the western part of the ore field (Kholtoson vein deposit) as well as to the stockwork in the central part (Inkur stockwork deposit). The Kholtoson deposit occupies the western part of the ore field and is composed of numerous quartz veins localized mainly in the diorites of the Modonkul massif. Conducted works allowed to find out that the main gangue mineral is quartz; muscovite, potassium feldspar and carbonates are also present. Hubnerite is the main ore mineral of the Kholtoson deposit. In total, more than 20 mineral species have been identified including sulfides (pyrite, chalcopyrite, galena, sphalerite, bornite, etc.), sulfosalts (tetrahedrite, aikinite, stannite, etc.), oxides (scheelite, cassiterite), tellurides (hessite). According to the data of fluid inclusions study, calcium chlorides with an admixture of sodium and potassium chlorides predominate in the salt composition of oreforming fluids. The minimum temperatures of quartz deposition vary in the range of ~195–344 °С. Most of the homogenization temperatures determinations correspond to the range of ~250–300 °С. The presence of cogenetic fluid- and vapordominated inclusions in quartz from the ores of the Kholtoson deposit allows to estimate the fluid inclusion capture temperature range of 413–350 °C. The results of the studies carried out by the authors indicate that the main factors of hubnerite precipitation from hydrothermal solutions are changes in alkali-acid content and a temperature drop.

50-59 317
Abstract

The purpose of the present study is to evaluate the mass fractions of the group of noble metals (gold, silver, platinum, ruthenium, osmium, palladium, iridium, rhodium) in the ores and host rocks of the Pioneer deposit (the Upper Amur Region, Russia) and to determine their migration activity and hydrochemical classification of ore metals by sizes. The object of the study is primary and oxidized ores, as well as rocks hosting this mineralization. The study employs the method of quantitative chemical analysis, micro assay melting with an error of correctness, accuracy and reproducibility of the results of ≤30 %. Pioneer is a near surface hydrothermal deposit with oxidized and sulfide types of ores, which are processed both by the open method of alkaline heap cyanide leaching, and by the closed pressure method, respectively. A gold concentration plant was built to implement these processing methods. The main recoverable component of this technology is gold, whereas silver and platinum group metals are present in industrial products as impurities. The technology is highly profitable, which allows cost-effective processing of ores with the mass fractions of 1–4 ppm of gold. The performed hydrochemical classification of the sizes of native gold minerals has showed that the bulk of the nuggets (74– 78 %) of primary, sulfide, and oxidized ores accounts for the fraction with the sizes of 160–1000 μm and 11–13 % account for the fraction with sizes of 16–40 μm. Fine gold of the deposit provides its complete dissolution during the cyanidation process.

Exploration and Development of Mineral Deposits

60-72 503
Abstract

The research deals with the analysis of new technologies for drilling oil and gas wells including the technology of managed pressure drilling (MPD). A consideration is given to the equipment for creating differential pressure in the wellreservoir system, which is supplied by the foreign companies Schlumberger, M-I SWACO, AKROS, etc. The analysis is given to the application of the basic complex of managed pressure drilling equipment, which includes the installation of back-pressure control, nitrogen compressor station, choke manifold, separator, rotary wellhead dock, flare tower with ignition system and hardware and software complex. The article also deals with the implementation options of the managed pressure drilling technology through the use of a sealed circulation system, which simplifies the well flushing scheme and ensures smooth adjustment of the flushing agent pressure at the bottomhole. A viable possibility of the presented basic MPD equipment and the attached software and hardware complex to determine the permissible values of reservoir fracturing pressure and formation pressure is studied in order to monitor the pressure profile in the casing annulus. It has been found that managed pressure drilling as a fundamentally new primary penetration technology for the hydrodynamic conditions of the reservoir allows to perform drilling in the zones with almost any initial absorption rate. That means that we do not stop sinking by boring (i.e. circulation) and do not increase the equivalent pressure on the horizon that depends on the equivalent circulating density. The adjustment involves the approximation of the equivalent pressure on the horizon to the formation pressure. The technological process of managed pressure drilling with the use of the discussed equipment will enable better understanding of the efficiency of this drilling technology by the drilling personnel and contribute to its more conscious application by domestic companies.

73-79 228
Abstract

Today the development of upland quarries with the formation of multi-tiered dumps of overburden rock mass in complex conditions of mountainous terrain and limited land resources still remains a problem. The conducted analysis has shown that the practice of designing of multi-tiered dumps in gorges lacks detailed consideration of the issues determining the stress distribution in the dump body depending on the dihedral angle formed by the slopes of the side faces of the gorge. The point is that the process of overburden dumping is accompanied with the transmission of stress forces to the central axial plane of the dump body formed in the gorge from the side of the gorge inclined surfaces. At the same time, the inclined component of stresses is due to the mass of overburden rocks dumped onto the inclined side surfaces of the gorge. Being directed at an angle to the shear forces acting in the dump, these lateral stresses play a positive role in the acceleration of rock mass consolidation in the clamped environment during the overburden dump formation. The decrease in dump shear forces leads to the increase in dump stability. It also allows to determine the rational volumes of overburden to be laid as well as the main parameters of a multi-tiered dump. It should be noted that there are significant difficulties in identifying and objective assessing the nature of occurrence and distribution of stress forces in the dump being constructed in the gorge using graphic-analytical methods. In the course of the presented study, the author made an attempt to identify and register stress forces in the body of a multi-tiered overburden dump formed in the gorge using physical modeling methods. For this purpose, a three-dimensional model test bench of a multi-tiered dump has been developed. This test bench allows to solve a three-dimensional problem using the method of physical modeling and, identify the stress variation patterns in the central axial plane of the dump model depending on the inclination angles of the side surfaces of the gorge.

80-89 358
Abstract

The purpose of the study is to assess the reliability of sampling results of concentration tailings at the experimental site of Tereklikan of Kanjol deposit (Tajikistan). The study involves the description of dredging waste and dumps of the site under investigation. The total length of the sampled interval is 12 m. It was divided into two local intervals of 4 and 6 m long according to geological features (amount of veined quartz material). Each type and component of the sampling process including the study of the mineral and chemical composition of ores is of utmost importance in the determination of the quality and quantity of the ore mass (ore), whereas the study of ore mineral and chemical composition is used during prospecting and exploration works for ore minerals (lead, zinc, tin, gold, copper, aluminum, manganese, etc.). The authors substantiate the feasibility for technogenic deposits formed under non-ferrous metals mining to be involved in operation. The methodology and channel sampling results are presented and the reliability of the latter is assessed. The methodology and results of physico-chemical research of concentration tailings via spectral analysis and atomic absorption method are given. The industrial significance of ancient dredging waste and dumps as well as the content of valuable components sufficient for their development has been established. An acceptable technology of dredging waste and dumps processing when involved into operation has been proposed.



Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2686-9993 (Print)
ISSN 2686-7931 (Online)